数据挖掘和文本挖掘是当前信息技术中的一个重要研究领域;将遗传算法和社会演化算法应用于数据及文本挖掘方法研究,具有较大的理论意义和实用价值。《数据与文本挖掘及其在研发决策中的应用》研究了基于遗传算法和社会演化算法的数据挖掘和文本挖掘方法,主要包括数据挖掘和文本挖掘中的属性约简问题、聚类问题,并将其应用于产品研发决策中。 所做主要工作包括:提出一种基于遗传算法和k-medoids算法的新的聚类方法;采用遗传算法和模式聚合进行文本特征降维;采用遗传算法和潜在语义索引进行文本特征降维;采用社会演化算法进行聚类;采用混沌社会演化算法进行聚类;采用改进的遗传算法和社会演化算法进行文本聚类研究;将文本挖掘应用到产品研发决策中,构建产品研发文本知识地图,以期提高产品研发的效率和质量。 《数据与文本
本书以大数据为研究背景,系统分析了传统数据技术当前存在的问题以及面临的挑战,并对比了当前主流的面向大数据的数据库解决方案,在此基础上阐述了笔者的研究工作:基于MapReduce平台高处处理大数据的OLAP研究。书中反应了当前大规模数据仓库研究的热点和成果,值得大数据研究的人员参考和应用。
本书力求简明扼要地阐述云计算的基本概念,让非IT专业人士也能轻松看懂这一现在人人都能接触(以后程度会更深)的事物――云计算。本书遵循一条由感性到理性、由浅入深的主线展开:首先采用情景描述,让外行的人对云计算也能产生感性认识;其次从计算机的基本知识开始逐步引出云计算的概念,使人产生理性认识;接着列举一系列生活中的典型云应用例子,让人们明白云计算给生活带来的确切好处;采用三个云计算实施方案让人们感受一下组建云计算中心的过程,以达到抛砖引玉之功效。本书可作为高等院校学生教材。
CDA数据分析师系列丛书按照数据分析师规范化学习体系而定,对于一名初学者,应该先掌握必要的概率、统计理论基础,包括描述性分析,推断性分析,参数估计,假设检验,方差分析,回归分析等内容,这在《从零进阶!数据分析的统计基础》中进行了专业详细的讲解。其次,数据分析需要按照标准流程进行,即数据的获取、储存、整理、清洗、归约等系列数据处理技术,这在《如虎添翼!数据处理的SASEG实现》中利用SASEG和编程技术进行了操作过程的详解。经过处理的数据需要根据业务问题,利用相关方法进行建模分析,得出结果,结果检验,绘制图表并解读数据,这在《CDA数据分析师系列丛书:胸有成竹!数据分析的SASEG进阶》中进行了详细的讲解和操作分析。CDA数据分析师丛书整体风格是“理论>技术>应用”的一个学习过程,目的在于商业业务应用、职场数
汪疆平主编的《数据如海可淘金--大数据技术及其在智慧城市的应用》系统性地介绍了大数据的方方面面,采用通俗易懂的语言,描述了大数据的技术奥秘和应用场景。本书深入浅出地介绍了大数据的技术,与日常生活中的场景结合在一起,描绘大数据如何在我们身边提供服务,使得只具有一般信息技术知识的读者也能清晰地理解什么是大数据。
如果你是一名IT工程师,CTO希望你在一周内提交一份公司未来IT基础架构的初步建议;如果你是一位IT营销人员,客户需要你在一周内向他汇报未来大数据的大致技术方向;……在这个信息严重过剩的时代,一周内从浩渺的技术细节的海洋中抓住关键的技术脉络,并进一步提出有理论依据的技术思考,这几乎是不可能完成的任务。您是否想过阅读一本关于大数据的图书帮助解决如上问题?浩如烟海的大数据领域图书可以大致归纳为三类:类是描述大数据的应用前景与社会意义;第二类是研讨大数据作为一个大型IT的架构与技术架构;第三类是研讨大数据领域的具体技术,例如HADOOP相关的编程等。对于需要快速掌握大数据技术脉络,或者是需要对未来IT做思考的技术工作者来说,最需要的是第二类图书所提供的化知识。但目前业界大数据相关的书籍与资料,大多是类与第
大数据时代,对数据进行统计、分析和学习变得尤为重要,并被应用在各方各面,如无人驾驶汽车、AlphaGo、机器学习和人工智能等,而统计思维也成为大数据时代的基本思维。不仅这些高科技以统计学为基础理论,大数据时代的每个人都应该懂点统计学,学会读懂并分析数据,学会让数据说话,让数据为自己服务。《大数据时代的统计学思维:让你从众多数据中找到真相》就是大数据时代统计学思维的科普书籍,全书共10章,章用几个有趣好玩的例子引导读者进入统计学的世界,并调动读者学习统计学的兴趣。第2~10章结合生活和工作中的例子全面介绍统计学原理和方法,涵盖统计学中的数据收集、数据处理和统计推断等内容,既有抽样调查、概率、相关性分析、回归分析等实用统计方法,也有大数定律和中心极限定理等基本统计学原理。用实例引导理论,通俗易懂
大数据系列丛书大数据导论周苏王文编著清华大学出版社北京内容简介这是一个大数据爆发的时代。面对信息的激流、多元化数据的涌现,大数据已经为个人生活、企业经营,甚至国家与社会的发展都带来了机遇和挑战,大数据已经成为IT信息产业中潜力的蓝海。“大数据导论”是一门理论性和实践性都很强的课程。本教材针对信息管理、经济管理和其他相关专业学生的发展需求,系统、全面地介绍了关于大数据技术与应用的基本知识和技能,详细介绍了大数据与大数据时代、大数据的可视化、大数据的商业规则、大数据时代的思维变革、大数据促进医疗与健康、大数据激发创造力、大数据预测分析、大数据促进学习、大数据在云端、支撑大数据的技术、数据科学与数据科学家和大数据的未来等内容,具有较强的系统性、可读性和实用性。本书是为高等院校相关专
《大数据管理:数据集成的技术、方法与实践》是数据集成领域的经典著作,由具有数十年从业经验的资深数据集成专家撰写,数据管理专家作序推荐!它为大数据时代的大中型企业管理企业内部大量的、复杂的应用系统之间的数据提供了解决方案,全面而深入地讲解数据集成的工具、方法、技巧、解决方案以及实践。《大数据管理:数据集成的技术、方法与实践》分为四部分,共22章,高屋建瓴地阐述了在大型组织环境中,不同计算机系统之间传输数据,以及将异构数据进行集成所用到的技巧、技术和实践,内容涵盖数据集成导论、批处理数据集成、实时数据集成和大数据集成等。《大数据管理:数据集成的技术、方法与实践》虽然介绍了各种数据集成问题的多种不同类型的技术解决方案,但读者无需具备广阔的技术背景就能理解,适合数据处理相关的项目经理