本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
部分(第1~4章)为基础和背景部分,主要介绍数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的本质,以及实践中常见分析项目类型的介绍。第二部分(第6~13章)是数据分析挖掘中的具体技巧和案例分享部分,主要介绍实践中常见的分析挖掘技术的实用技巧,并对大量的实践案例进行了全程分享展示。第三部分(第5章,第14~19章)是有关数据分析师的责任、意识、思维的培养和提升的总结和探索,以及一些有效的项目质控制度和经典的方法论介绍。
本书是《实用数据结构基础(第四版)》(陈元春、王中华、张亮、王勇编著,中国铁道出版社出版) 的配套学习指导书。全书内容分为5部分:教学内容指导(包括对主教材第1~10章的知识点分析、典型 习题分析和各章习题解答);自主设计实验指导(对10个自主设计实验的设计思想、算法分析进行了详细 指导);模拟试卷;模拟试卷参考答案;数据结构课程设计报告样例。 本书对数据结构的概念和原理的阐述通俗易懂,例子翔实;习题难易适中,题型丰富;对数据结构 基本运算的分析注重实现的过程。本书以C/C++语言作为算法的描述语言,对于书中的实验和一些重要 的算法均给出了完整的C/C++语言源程序,并全部在Visual C++ 6.0环境下运行通过。 本书适合作为普通高等院校计算机类专业数据结构课程的教学辅导书,也可作为成
这是一本根据应用场景讲解如何通过Spark进行大数据分析与应用构建的著作,以实战为导向。作者结合典型应用场景,抽象出通用与简化后的模型,以便于读者能举一反三,直接应用。 本书首先从技术层面讲解了Spark的机制、生态系统与开发相关的内容;然后从应用角度讲解了日志分析、推荐系统、情感分析、协同过滤、搜索引擎、社交网络分析、新闻数据分析等多个常见的大数据场景下的数据分析。在每个场景中,首先是对场景进行抽象与概括,然后将Spark融入其中构建数据分析算法与应用,后结合其他开源系统或工具构建更为丰富的数据分析流水线。
数据挖掘是近年来计算机科学中活跃的研究分支之一。本书分三部分介绍数据挖掘中的三个热点:空间数据挖掘、半监督学习与流形学习,并分别介绍了这三个研究热点的研究背景、研究现状、存在问题、*算法与应用等。本书在论述这三个研究热点的研究现状并分析了存在的问题后,面向实际需要,提出*的模型、算法与技术。这些模型与算法以作者研究成果为基础,具有一定的创新性与实际应用价值。这些成果可帮助广大研究工作者与工程技术人员拓展思路,并为数据挖掘的理论应用提供借鉴。 本书可供数据挖掘、机器学习及相关专业的研究人员、教师、研究生和工程人员参考。
本书在介绍大数据发展背景、特点及主要技术层面的基础上,对大数据的数据采集、数据存储、常见计算模式和典型系统工具进行了分析介绍。本书同时对各种典型系统工具进行了讲解,包括大数据查询分析计算及典型工具(HBase、Hive)、批处理计算及典型工具(MapReduce、Spark)、流式计算及典型工具(Storm、Apex、Flink)、事件流及典型工具(Druid)等。本书提供了大量的实例和源代码供读者参考,指导读者快速、无障碍地了解和掌握常见大数据分析工具的使用。本书适合作为计算机及相关专业的教学用书,也可以作为大数据初学者的自学教材和参考手册。
本书按照简明、易读、突出实用的原则编写,书中所选案例均来自企业PDM项目实际,并在Siemens PLM Software Teamcenter 10平台上加以实现,同时由编者反复论证,全书图文并茂,并配以详尽准确的讲解步骤,使读者能够快速理解并掌握本书案例中所阐述的PDM实施方法和技巧。另外,本书每章都附有相应的练习题,供读者进行练习。读者通过学习本书,可以由浅入深、循序渐进地理解PDM的基本知识和原理,掌握企业PDM实施技能,逐步具有借助PDM平台提高企业研发核心能力,提升产品质量的工程素养。
本书覆盖了数据仓储构建的所有主要领域,包括数据仓储的定义和环境;数据仓储的4个类型、对数据仓储的5类共15个要求;2个方法论的总结及3个构建方法。本书给出了一个高性能的参照系统结构。基于此参照系统结构,本书系统地讨论了大量设计议题、并包括21个设计建议、8个实践建议、7个设计原则、27个通用算法和技术、12个元数据驱动的通用操作符、7个工作过程、4个范式基础及范式原则。
由周跃南、蔡学军主编的《云计算技术实训教程 (云计算技术与应用课程群高等职业教育十三五规划教材)》根据职业教育的教学特点和培养目标,依托长城云教室和云实训平台,采用 实训任务驱动式教程 方式编写,介绍了云计算基础技能,也补充了一些相关的云计算知识,做到以技能训练为主,理论与实践相结合。全书共分八大任务,包括资源管理、虚拟机管理、网络管理、存储管理、安全管理、用户管理等方面的内容。 本书是中职云计算技术与应用专业及相关专业的云计算技术技能训练教材,也适合高职云计算技术与应用专业使用,还可以作为相关技术人员的培训教材。
大数据时代的到来,使我们的生活在政治、经济、社会、文化各个领域都产生了很大改变。 数据科学 一词应运而生。如何更好地对海量数据进行分析、得出结论并做出智能决策是统计工作者面临的机遇与挑战。 本书介绍数据挖掘与统计机器学习领域常用的模型和算法,包括基础的线性回归和线性分类方法,以及模型选择和模型评价的概念和方法,进而介绍非线性的回归和分类方法(包括决策树与组合方法、支持向量机、神经网络以及在此基础上发展的深度学习方法)。后介绍无监督的学习中的聚类方法和业界广泛使用的推荐系统方法。除了方法的理论讲解之外,我们给出了每种方法的R语言实现,以及应用Python语言实现深度学习和支持向量机两种方法。本书的一个亮点是后一章给出的两个大数据案例,数据量均在10G左右。我们同时给出了单机版(Python、数据库、R
本书主要包括三部分内容,即误差和数据处理基础、试验设计方法与应用和计算机数据处理软件简介。从误差理论入手,分别介绍测量值与误差、偶然误差的分布、误差传递等误差理论中的内容,介绍统计检验、方差分析、回归分析和聚类分析等数据处理方法与应用,介绍提高分析化学准确度的方法及质量控制方法,介绍正交试验设计、多因素序贯试验设计、*化区组和拉丁方设计、析因设计、响应面设计方法与应用,后一章以较大篇幅对现时流行的大型统计软件之一SPSS(Statistical Product and Service Solutions)进行简要介绍,书末附有习题及常用的统计数表。 本书着重介绍基本概念和基本理论,并在此基础上结合专业特点,介绍了各种统计方法在化学化工、医药、环境检测、矿物加工等多方面的应用,本书把误差与数据处理、质量控制和实验设计作为重点。
本书侧重于信息管理中信息组织与处理的技术,全面而系统地介绍了数据仓库与数据挖掘的基本概念、基本方法和基本技术,以及数据仓库与数据挖掘的应用领域与*进展。全书共分10章,包括概论,数据仓库的技术与开发,数据仓库的管理,联机分析处理,SQLServer数据仓库的应用与开发,数据挖掘与知识发现,统计类数据挖掘技术,知识类数据挖掘技术,21世纪的数据挖掘技术,数据仓库与数据挖掘的综合应用等内容。为了便于学习,每一章都有提要和小结,并配有一定数量的习题,以帮助读者对基本内容的理解和掌握。本书深入浅出,阐述清晰、理论与实际并重,可作为高等院校信息管理与信息系统等专业本科生、研究生的教材。
商业智能是将企事业单位积累的数据转化为知识,帮助企事业单位做出科学决策的工具。蔡颖、鲍立威编著的《商业智能原理与应用》以“商业智能”应用为主线,全面系统地介绍了商业智能的基本概念、方法和技术,克服了以“数据挖掘” 技术为丰线的局限性,并以MS SQLServer作为数据仓库管理平台,以SQL Server Business Intelligence DeveloprnentVisualStudio作为商业智能开发平台,进行了丰富的案例演示。《商业智能原理与应用》可作为高等院校高年级本科生教材,也可作为MBA教材以及盯相关专业人员、市场营销人员、管理决策支持等实际经济管理领域实务工作者的参考用书。
本书以关系数据库为重点,系统、完整地讲述了当前数据库技术的基本原理和应用实践。取材上力图反映当前数据库技术的发展水平和发展趋势。 本书共分8章。第1章绪论,概述了数据管理的进展、数据模型、数据库管理系统和数据库工程的基本概念。第2至4章讲解了关系数据库的数据模型、数据语言和数据理论,其中对关系数据库的标准语言SQL进行了深入介绍。第5章详细讨论了数据库的安全性、完整性、并发控制和恢复等数据库保护技术,并以一个关系数据库产品为例,说明数据库保护技术在实际产品中是如何实现的。第6章讲述了设计数据库应用系统的方法。重点放在设计关系数据库应用系统上。第7章介绍关系数据库产品的发展过程和5个关系数据库产品实例。第8章数据库技术的新进展介绍了数据库技术的发展过程和新一代数据库系统,包括分布式数据库、并
《数据仓库与数据挖掘技术》主要介绍数据仓库和数据挖掘技术的基本概念、相关技术和应用案例及方法。全书共分为9章,主要内容包括:数据仓库与数据挖掘的概念和体系结构、数据仓库开发模型、etl技术、olap技术、商务智能系统、数据预处理技术、数据挖掘技术、数据仓库开发实例、报表设计等内容。本书各章节的案例均使用microsoftsql server2005进行操作实践讲解。通过对具体实例的学习和实践,使读者掌握数据仓库和数据挖掘中必要的知识点,达到学以致用的目的。 《数据仓库与数据挖掘技术》适合作为高等院校本科学生的教材,也可供企业信息化管理人员、技术人员以及软件开发人员阅读参考。
《海量点云数据处理理论与技术》共分8章。第1章绪论,简要介绍海量点云处理技术的基础理论、方法以及主要内容。第2章介绍海量点云数据的预处理,包括点云数据的获取方案,点云的去噪、压缩、配准方法,以及点云空洞的插值方法。第3章介绍海量点云数据的重建方法,系统介绍常用的点云重建算法与特点,并详细介绍基于特征和基于切片的点云重建方法。第4章介绍点云数据及模型的质量评价,从理论和实际两方面对点云质量进行分析,总结点云配准过程中的误差传播模型,系统地归纳三维模型的质量评定方法。第5章介绍点云数据处理技术,详细介绍国内外常用的海量点云数据处理软件以及三维图像库。第6章介绍地面三维激光扫描仪在隧道监测领域的应用,系统介绍基于三维激光扫描技术的隧道点云数据获取、处理及变形分析方法。第7章介绍地面三维