这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第壹部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式
本书从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和 新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的一本书。
本书由一线数据分析师精心编写,通过大量案例介绍了数据分析工作中常用的数据分析方法与工具。本书包括5章内容,分别是数据分析入门、数据分析 从玩转Excel开始、海量数据管理 拿MySQL说事儿、数据可视化 Tableau的使用、数据分析进阶 Python数据分析。本书通俗易懂、通过大量贴近企业真实场景的案例,帮助读者在提高数据处理技能的同时加深对数据分析思维的理解。 本书适合有志于从事数据分析工作或已从事初级数据分析工作的人士自学,也可作为产品经理、运营人员、市场人员、对数据分析感兴趣的企业高管以及创业者的参考用书。
作为一本 Power Query 初级入门读本,《Power Query 智能化数据汇总与分析》不深入介绍 M 函数,而是结合大量的实际案例,利用 Power Query 可视化的操作向导,来解决实际工作中烦琐的数据整理、汇总和分析问题,让读者在短时间内,能够对 Power Query 有一个较为全面的了解和掌握,并能迅速提升数据处理和统计分析效率。 《Power Query 智能化数据汇总与分析》适合具有 Excel 基础知识并经常处理大量数据的各类人员阅读,也可作为大专院校经济类本科生、研究生和 MBA 学员的教材或参考书。
本书分12章重点阐述了数据管理的重要性,数据管理面临的挑战,DAMA的数据管理原则,数据伦理,数据治理,数据生命周期管理的规划及设计,数据赋能和数据维护,使用和增强数据,数据保护、隐私、安全和风险管理,元数据管理,数据质量管理,以及现在应该怎么办,能够帮助企业管理层在了解和执行数据管理的过程中不致迷失在技术术语的迷宫之中。本书可供非数据专业人士、企业管理者、数据行业研究者等读者学习和参考。
本书由浅入深,全面系统地介绍了Wireshark数据抓包和数据包分析。本书提供了大量实例,供读者实战演练Wireshark的各项功能。同时,对抓取的数据包按照协议层次,逐层讲解各个协议在数据包中的体现。这样,读者就可以掌握数据包抓取到信息获取的每个环节。 本书共分3篇。第1篇介绍Wireshark的各项功能,包括基础知识、Wireshark的定制、捕获过滤器和显示过滤器的使用、数据包的着色、导出和重组等;第2篇介绍基于Wireshark对TCP/IP协议族中常用协议的详细分析,如ARP、IP、UDP、TCP、HTTP、HTTPS和FTP等;第3篇介绍借助Wireshark分析操作系统启动过程中的网络通信情况。 本书涉及面广,内容包括工具使用、网络协议和应用。本书适合各类读者群体,如想全面学习Wireshark的初学者、网络管理员、渗透测试人员及网络安全专家等。对于网络数据分析人士,本书更是一
《IBM SPSS数据分析实战案例精粹(第2版)》以IBM SPSS Statistics 24为工具,提供了医疗、金融、保险、汽车、快速消费品、市场研究、互联网等多个行业的数据分析/挖掘案例,基于实战需求,详细讲解了整个案例的完整分析过程,并将模型和软件的介绍融于案例讲解之中,使读者在阅读时能突破方法和工具的限制,真正聚集于对数据分析精髓的领悟。本书还一并提供案例数据的下载,读者可完整重现全部的分析内容。 《IBM SPSS数据分析实战案例精粹(第2版)》适合从初学者到专家各个级别的数据分析人士阅读,包括需要提升实战能力的数据分析专业人士,在市场营销、金融、财务、人力资源管理中需要应用数据分析的人士,从事咨询、科研等工作的专业人士,同时也可以作为各专业的本科和研究生学习数据分析应用的参考书。
《商业智能工具应用及数据可视化》一书聚焦商业智能与数据可视化主题,从概念、价值、方法、工具等理论基础出发,以实际场景为参考,分入门、进阶两大阶段,以帆软FineBI为例从商业智能工具的基本知识,商业应用场景,数据可视化优秀案例等方面,介绍了商业智能工具和各种常规和高级可视化图形的使用方法,重点介绍了商业智能工具FineBI的数据分析与可视化应用实践。本书内容层层递进,体系完善,可使读者对商业智能工具的运用有一个全面、系统、深入的了解。
本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
大数据时代,对数据进行统计、分析和学习变得尤为重要,并被应用在各方各面,如无人驾驶汽车、AlphaGo、机器学习和人工智能等,而统计思维也成为大数据时代的基本思维。不仅这些高科技以统计学为基础理论,大数据时代的每个人都应该懂点统计学,学会读懂并分析数据,学会让数据说话,让数据为自己服务。《大数据时代的统计学思维:让你从众多数据中找到真相》就是大数据时代统计学思维的科普书籍,全书共10章,第1章用几个有趣好玩的例子引导读者进入统计学的世界,并调动读者学习统计学的兴趣。第2~10章结合生活和工作中的例子全面介绍统计学原理和方法,涵盖统计学中的数据收集、数据处理和统计推断等内容,既有抽样调查、概率、相关性分析、回归分析等实用统计方法,也有大数定律和中心极限定理等基本统计学原理。用实例引导理论,通俗
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
本书以LabVIEW 2017为基础,讲述LabVIEW图形化编程语言的原理,以及如何利用LabVIEW完成虚拟仪器设计。全书共15章,分为两篇,分别是基础知识篇(第1~13章)和实际应用篇(第14、15章)。第1章,综述虚拟仪器技术的构建思想和方法论。第2~7章,讲述LabVIEW图形化编程语言的基本原理以及编程方法,内容包括LabVIEW入门、基本数据类型、程序结构、复合数据类型、文件I/O、图形显示及其他技巧。第8~12章,阐述如何利用LabVIEW去控制仪器硬件以实现对被测信号的数据采集,内容包括选择专用的数据采集卡进行数据采集; 利用计算机自带的声卡实现数据采集; 利用摄像头完成图像采集; 仪器控制和控制单片机。第13章,讲述用LabVIEW实现仪器应用的若干算法和信号分析处理的相关知识。第14、15章,介绍利用LabVIEW完成有实际应用背景的两个虚拟仪器项目,分别是用LabVIEW构建函
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式和
内容简介 这是一部全面讲解数据产品经理核心知识体系的著作。12位作者大多来自国内的知名企业,涉及不同的行业,让本书拥有了更广泛的视角,能帮助读者从不同的角度去了解数据产品经理如何在数据、产品、运营、市场等多个方面产生价值。本书的*终目的是让读者全面了解数据产品经理的工作内容、系统掌握数据产品的核心知识体系,快速实现从入门到进阶的突破。 全书一共11章,重点讲解了数据产品经理应该掌握的11个核心知识点,可以概括为四个部分。 第壹部分 基础知识(第1章) 首先介绍了数据产品的定义、组成、分类,其次介绍了数据产品经理的分类和能力模型,*后介绍了数据产品经理的招聘、应聘和面试。 第二部分 通用能力(第2~3章) 讲解了数据产品经理应该具备的数据分析能力和项目运作能力(产品路线图)。 第三部分 数据管理(第4~9章
本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
这是一本跟数据科学和数据科学家有关的“手册”,它还包含传统统计学、编程或计算机科学教科书中所没有的信息。 本书有3个组成部分:一是多层次地讨论数据科学是什么,以及数据科学涉及哪些其他学科;二是数据科学的技术应用层面,包括教程和案例研究;三是给正在从业和有抱负的数据科学家介绍一些职业资源。本书中有很多职业和培训相关资源(如数据集、网络爬虫源代码、数据视频和如何编写API),所以借助本书,你现在就可以开始数据科学实践,并快速地提升你的职业水平。
本书是国内绝大多数高校采用的知名教材《云计算》(1-3版)的姊妹篇,是中国大数据专家委员会刘鹏教授联合国内多位专家历时两年的心血之作。大数据领域一直缺乏一本权威教材,希望本书能够填补空白。本书系统地介绍了大数据的理论知识和实战应用,包括大数据采集与预处理、数据挖掘算法和工具和大数据可视化等,并深度剖析了大数据在互联网、商业和典型行业的应用。刘鹏教授创办的网站中国大数据(thebigdata.cn)、中国云计算(chinacloud.cn)和微信公众号刘鹏看未来(lpoutlook)将免费提供本书配套PPT和其他资料。本书配套的大数据实验体系已经在郑州大学等高校成功应用。
本书介绍了数据挖掘的基本概念,包括数据挖掘的常用算法、常用工具、用途和应用场景及应用状况,讲述了常用数据挖掘方法,如分类、聚类、关联规则的概念、思想、典型算法、应用场景等。此外,本书还从实际应用出发,讲解了基于日志的大数据挖掘技术的原理、工具、应用场景和成功案例。日志挖掘技术现在已得到了广泛的运用。通过以上内容的学习,读者将了解数据挖掘的基本概念、思想和算法,并掌握其应用要领。本书可以作为培养应用型人才的课程教材,也可作为相关开发人员的自学教材和参考手册。
全书内容分为大数据系统基础、Hadoop技术、Spark技术和项目实战4部分。其中,Linux是学习大数据技术的基础,先从Linux入手,打下坚实的基础,之后才能更好地学习Hadoop和Spark。4部分内容分别介绍如下。 大数据系统基础篇通过大数据概述、Linux系统安装、Linux系统基础命令、Shell编程和MySQL数据操作,为以后编程奠定坚实的基础。 Hadoop技术篇以Hadoop生态圈为中心,详细介绍Hadoop高可用集群搭建、HDFS技术、MapReduce技术、Hive技术,为读者学习大数据开发技术提供便利,并以实用的方式简单介绍HBase、Sqoop、Flume工具的使用,使读者在精通一门技术的前提下,能扩展了解相关知识,真正成为一专多能的专业型人才。 Spark技术篇从Spark概述、Scala语言、环境搭建、RDD核心技术、Spark SQL和机器学习等多方面讲解Spark大数据的开发,从基础的Scala语言开始学习,并以Hadoop环
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。 主要包括: 完成超大量交易的购物篮分析。 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。 使用超大基因组数据完成DNA和RNA测序。 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。 推荐算法和成对文档相似性。 线性回归、Cox回归和皮尔逊(Pearson)相关分析。 等位基因频率和DNA挖掘。 社交网络分析(推荐系统、三角形计数和情感分析)。
本书完整全面地讲述数据挖掘的概念、方法、技术和近期新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的优秀教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。