Stata是一种功能全面的统计分析软件包,具有易操作、运行速度快、功能强大的特点,主要针对经济、管理、医学、农学、教育、市场研究、社会调查等行业和领域,是大数据时代为流行的计量软件之一。 全书内容共分17章。第1、2章介绍Stata操作入门及数据处理基础知识、描述性统计与图形绘制基础。第3~5章介绍假设检验、方差分析、相关分析等基础分析方法。第6~10章通过相关案例介绍经典及放松各种假定条件的回归分析,包括基本线性回归分析、线性回归分析诊断与处理、非线性回归分析、因变量离散回归分析、因变量受限回归分析等应用。第11~16章以典型案例讲解主成分分析与因子分析、聚类分析、时间序列数据分析、面板数据分析、生存分析、多方程模型等高级分析方法。第17章介绍如何使用Stata进行高质量的综合性研究,讲解研究方案设计、调查问卷的制
这是一本需要 动手实践 的图书,通过带领大家从零构建一款分布式向量数据库,让大家透彻理解向量数据库的技术原理和实现细节。 本书共分为三大部分,内容由浅入深、循序渐进。 第一部分 认识向量数据库 (第1~3章)是基础篇,介绍向量数据库的基础知识,涵盖向量及数据库的基本概念、向量数据库的发展历程和核心功能。 第二部分 构建向量数据库 (第4~6章)是核心篇,详细介绍如何从零开始构建并优化向量数据库,巨细靡遗地展示数据库内核的技术实现细节并辅以代码示例、技术架构图等,旨在让大家真正实现动手写向量数据库。 第三部分 向量数据库的实践与展望 (第7~8章)是结束篇,通过实践案例展示向量数据库在AI应用中的使用方法,并尝试勾勒向量数据库的未来。 本书面向数据库开发人员、数据库管理员、数据库架构师等数据库从业人
《大话数据结构【溢彩加强版】》以一个计算机教师的教学过程为场景,讲解数据结构和相关算法的知识。全书以趣味方式来叙述,大量引用各种各样的生活知识来类比,并充分运用全彩色图形语言来解读抽象内容,对数据结构所涉及的一些经典算法做出逐行分析、多算法比较。与同类图书相比,《大话数据结构【溢彩加强版】》内容有趣易读,算法讲解细致深入,是一本非常适合自学的读物。 对于学习数据结构来说,难点之一是对相关算法的理解。《大话数据结构【溢彩加强版】》创新性地采用全彩印刷,图表、流程、代码等内容结合色彩来重新进行约定和归纳,使得对一些难以理解的知识点的解析更加清晰顺畅,极大提升了阅读体验。 《大话数据结构【溢彩加强版】》主要内容包含:数据结构介绍、算法推导大O阶的方法;顺序结构与链式结构差异、栈与队列
《GraphPad Prism科技绘图与数据分析》以GraphPad Prism 9.4为软件平台,结合编者多年的数据分析经验,通过大量实例系统全面地介绍Prism在科研数据处理中的使用方法与技巧。全书共11章:第1~3章主要讲解GraphPad Prism的基础知识,包括用户界面、项目组成、图形的输出、数据的输入、数据表类型、图形的修饰与美化等;第4~11章结合Prism数据表的特点,分别讲解各类数据表的数据格式、数据表能够完成的图表绘制以及可以实现的统计分析等。通过阅读本书,可以帮助读者快速掌握GraphPad的应用,从而更好地处理和分析科研数据。 本书注重基础,内容翔实,突出示例讲解,既可以作为从事数据分析处理的科研工程技术人员的自学用书,还可以作为高等学校相关专业的本科生和研究生的教学用书。
《数据分析思维:分析方法和业务知识》分为两大部分: 方法篇 和 实战篇 。 方法篇 介绍了数据分析中常用的业务指标、分析方法以及如何用数据分析解决问题的步骤。 实战篇 讲解了如何应用*篇的方法来解决工作中的问题,分享十二个行业(国内电商、跨境电商、金融信贷、金融第三方支付、家政、旅游、在线教育、运营商、内容、房产、汽车、零售)的业务知识,以及该行业内用数据分析解决问题的实例。每个行业都包括业务模式、业务指标、案例分析三方面的内容。 通过本书的学习,你会熟悉数据分析的方法,并将其灵活应用在自己所处的行业中。
《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。
《数字化生存》描绘了数字科技为我们的生活、工作、教育和娱乐带来的各种冲击和其中值得深思的问题,是跨入数字化新世界的*指南。英文版曾高居《纽约时报》畅销书排行榜。 信息的DNA 正在迅速取代原子而成为人类生活中的基本交换物。尼葛洛庞帝向我们展示出这一变化的巨大影响。电视机与计算机屏幕的差别变得只是大小不同而已。从前所说的 大众 传媒正演变成个人化的双向交流。信息不再被 推给 消费者,相反,人们或他们的数字勤务员将把他们所需要的信息 拿过来 并参与到创造它们的活动中。信息技术的革命将把受制于键盘和显示器的计算机解放出来,使之成为我们能够与之交谈,与之一道旅行,能够抚摸甚至能够穿戴的对象。这些发展将变革我们的学习方式、工作方式、娱乐方式 一句话,我们的生活方式。犀利的见解使尼葛洛庞帝成为《连线》
伴随人类社会数字化进程的深入,数据正不断渗透于日常的生活、生产、分配、流通、消费等各个环节,对人类社会的影响日益凸显。数据已成为继土地、劳动力、资本、技术之后的第五大生产要素,对其他生产要素的整合能力也使其成为既有要素中比较重要的和难以替代的关键要素,并成为值得重点讨论的时代性议题与理解数字时代的基本入手点。 对数据要素的理解涉及多学科、多视野,本书从与数据要素关系较为密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。
本书以案例的形式,介绍从思维模型分析到场景实践的数据分析方法。全书围绕 数据分析 与 运营增长 两大关键要素,在系统介绍数据分析思维、数据分析方法、数据采集技能、数据清洗技能等基础知识的同时,以问题为导向,解读运营与增长的关键性业务内容,在获客、激活、留存、变现、自传播循环等各个核心运营环节展开数据分析实战。 本书提供案例相关数据集与源码包,适合数据分析、产品运营、市场营销等行业有数据分析具体业务需求的人士阅读,也适合相关专业的师生阅读。
《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》详细介绍了 SPSS 28 在数据统计分析方面的使用方法 和应用技巧,它是一本 SPSS 基础教程,同时包含了大量的 SPSS 视频教程。 《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》全书共 20 章,内容包括 SPSS 28 概述、初识 SPSS 28、SPSS 数据结构、数据管理、数据分类、数据清洗和数据加工、数据计算、数据分析图表、数据分布的特征分析、参数检验、非参数检验、均值分析、单因素方差分析、多因素方差分析、相关性分析、列联表相关性分析、回归分析、聚类分析、判别分析和电力中断数据分析实例等知识。通过丰富的实例,详细介绍了 SPSS 数据统计分析的全方位知识。本书在讲解过程中理论联系实际,并配有详细的操作步骤,图文对应,可以提高读者的动手能力,并加深对知识点的理解。 《中文版 SPSS 28
首席数据官(Chief Data Officer,CDO)是数字时代的产物,它在数字化转型的过程中,以及在转型成功后的数字经济中,都会起到关键作用。本书旨在建立一套相对完整的关于首席数据官的知识体系,帮助读者更好地参与数字时代的发展。 本书分为5篇。 第一篇 CDO概论 介绍CDO产生的背景、发展趋势、主要职责、技能和工作路径等。 第二篇 管好数据 讲解CDO如何管理好数据,涉及数据战略、数据治理、数据制度、数据标准、数据架构、数据质量、数据安全、数据合规、数据建模、数据集成、数据存储、数据分析和挖掘、数据伦理、数据开放与共享等。 第三篇 做好转型 讲解CDO如何做好数字化转型。 第四篇 建好团队 讲解CDO如何构建、领导和考核数据团队。 第五篇 新技术、新模式、新业态 介绍一些与数据及CDO相关的新技术、新模式和新业态。
数据是什么?如何应用数据?如何把数据变成更有价值的东西?本书主要适合刚开始使用数据的读者,能让他们对数据的含义、价值及用途有清晰的认识和了解,本书目的是介绍数据的相关知识,同时鼓励人们参与到日益增多的与数据有关的对话中。 本书通过介绍简单数据相关知识,即从一个总体目标、两种思维系统、三大应用领域、四种数据尺度、五种数据分析方法、六种数据展现方式、七种数据活动、八个提前问的问题分别展开阐释数据和分析的方法和思维方式。
目前,大数据成为人们耳熟能详的名词。在人工智能、大数据时代,数据处理、数据分析成为非常重要的工作,但是数据存储在哪里,数据是怎么存储的,数据库的工作原理是什么,面对大量数据,我们应该如何操作,很多人可能并不清楚。本书就用通俗易懂的文字,结合直观清晰的插图,对这些问题的关键技术 数据库相关知识点进行了详细解说。具体内容包括数据库的基础知识 理解数据库的基本概念、数据的存储方式 关系型数据库的特征、操作数据库 SQL的使用方法、管理数据 避免非法数据的功能、引入数据库 数据库的结构与表的设计、运用数据库 旨在安全运用、用于保护数据库的基础知识 故障恢复与安全措施、活用数据库 在应用程序中使用数据库等。本书适合所有对数据、数据库感兴趣的读者学习。
内容简介商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项技能。 作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。 本书分为6 篇,共17 章,其中第1 篇是概念篇,讲述商业分析的基本概念;第2 篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3 篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4 篇是高阶篇,讲述如何应对复杂的商业难题;第5 篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6 篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。 本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
在大数据爆发的短短10多年中,NoSQL成为处理大数据必须掌握的热门核心技术之一。《NoSQL数据库入门与实践(基于MongoDB、Redis)(第2版)》正是在这种背景下应运而生的,本书结合MongoDB、Redis和测试工具等全面介绍NoSQL数据库技术,是一本NoSQL数据库入门图书,也是初学者了解NoSQL 技术全貌的图书。全书包括3部分,其中NoSQL基础部分包括初识NoSQL、TRDB与NoSQL的技术比较、NoSQL数据存储模式;NoSQL实践部分(电商大数据)分别介绍了文档数据库MongoDB和键值数据库Redis 入门及提高知识,并通过两个电商平台综合案例详细介绍了MongoDB和Redis在实现不同业务(如日志存储、商品评价、订单信息记录、点击量存储、商品推荐、购物车、记录浏览商品行为等)功能模块开发过程中的具体应用;NoSQL提高部分(电商大数据〉介绍了大数据环境下MongoDB和Redis 在操作速度和数据存储方面的优化方法
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
本书是热销书《SQL基础教程》的作者MICK为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两大部分。部分介绍了SQL语言不同寻常的使用技巧,带领读者重新认识CASE表达式、窗口函数、自连接、EXISTS谓词、HAVING子句、外连接、行间比较、集合运算、数列处理等SQL常用技术,发掘它们的新用法。这部分不仅穿插讲解了这些技巧背后的逻辑和相关知识,而且辅以丰富的示例程序,旨在帮助读者从面向过程的思维方式转换为面向集合的思维方式。第二部分介绍了关系数据库的发展史,并从集合论和逻辑学的角度讲述了SQL和关系模型的理论基础,旨在帮助读者加深对SQL语言和关系数据库的理解。此外,本书很多节的末尾设置有练习题,并在书末提供了解答,方便读者检验自己对书中知识点的掌握程度。
本书以统计学史上著名人物的伟大成就为脉络,将数据分析这一学科的发展历程娓娓道来。从开普勒仰望星空拉开统计学序幕,贝叶斯提出主观概率,到人工智能、深度学习逐步渗透今天的日常生活。本书带领读者在数据科学的熠熠星光下,看透大数据的深邃内核。
对于任何依赖经常性收入和重复销售的企业来说,让客户保持活跃并持续购买是必不可少的。客户流失(或 流失 ),这种代价高昂且令人沮丧的事情是可以预防的。通过使用本书中介绍的技术,你可以识别客户流失的预警信号,并学会在客户离开之前识别并挽留他们。 《客户留存数据分析与预测》向开发人员和数据科学家传授经过实践证明的技术与方法,可以在客户流失发生之前阻止其发生。本书包含很多来自现实中的示例,介绍如何将原始数据转换为可衡量的行为指标、计算客户生命周期价值,并使用人口统计数据改进客户流失预测。通过遵循 Zuora 首席数据科学家 Carl Gold 的方法,你将获得高客户留存率带来的优势。 主要内容 ● 计算流失指标 ● 通过客户行为预测客户流失 ● 使用客户细分策略减少客户流失 ● 将客户流失分析技术应用于其他业务领域 ● 使用
当应用于大型分布式数据集时,标准算法和数据结构可能会变慢或完全失效。选择专为大数据设计的算法可以节省时间、提高准确性并降低处理成本。《漫画算法与数据结构(大规模数据集)》将最前沿的研究论文提炼为实用的技术,用于绘制、流式传输并组织磁盘和云中的大规模数据集,十分独特。 大规模数据集的算法与数据结构为大型分布式数据引入了处理和分析技术。《漫画算法与数据结构(大规模数据集)》作为指南,包含了行业故事和有趣的插图,使复杂的概念也易于理解。在学习如何将强大的算法(如Bloom 过滤器、计数最小草图、HyperLogLog和LSM树)映射到你自己的用例时,将对真实世界的示例进行探索。 主要内容: ● 概率草图数据结构 ● 选择正确的数据库引擎 ● 设计高效的磁盘数据结构和算法 ● 大规模系统中的算法权衡 ● 有限空间资源下的百分