内容简介 自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。 我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代? 有人说,大规模预训练已经过时,AI要实现具身化,具备推理能力,接着自我意识相伴而生。具身智能揭开了人类驯服机器的科学路径,小到在分子或原子上进行操作的纳米机器,大到震天撼地的巨型机械,无不乖乖地服从人类的操控指令,替代或者协助人类完成复杂的任务。 具有自我意识的AI是更安全还是更不安全?我们需要开始认真考虑
《DeepSeek实战应用一本通》是一本旨在引领读者全面探索并熟练运用DeepSeek进行多样化创作的实用指南。本书开篇即深入浅出地介绍了DeepSeek的基本情况、功能特点及使用技巧,为初学者扫清认知障碍,并在此基础上循序渐进,围绕学习、生活、工作等多个场景,通过丰富的案例和实操步骤,展示了如何使用DeepSeek进行各类题材的创作。无论是撰写学术论文、编辑工作报告,还是记录生活点滴、进行商业营销,DeepSeek都能成为读者的得力助手。
当前,人工智能作为一项引领未来的颠覆性战略技术,已在经济、军事、社会等各领域广泛用,成为世界各国科技竞争和战略布局的重中之重。本书以人工智能的“起点、拐点、奇点、看不见的终点”为线,突出认知新思维、技术新发展、应用新构想,从人工智能前世今生、思维方法、大模型、机器学习、感知认知、人机交互、脑科学、机器人,以及无人智能作战和未来发展等多维度、多层次、多领域进行全面深入剖析。
机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
AI技术突飞猛进,智能革命风起云涌,正在将人类社会推进到全新的智能社会。在以机器人劳动、智能治理、加速、后真相等为重要特征的智能社会中,人类既能享受到物质极大丰富的富裕生活,同时也面临着诸多科技风险和社会风险。关于AI的各种问题不仅为越来越多的人所困惑、思考,亦成为试图把握时代精神的当代人不可能绕开的问题。 《智能革命后的世界:AI技术与人类社会的命运》运用跨学科的理论、方法、观点和案例,深刻剖析了当前智能革命发展的趋势,并用通俗易懂、简洁明快的语言对“智能革命后的世界”进行总体把握和全面刻画。尤其聚焦于未来智能社会的数字 、智人自我改造、AI养老与机器情感、机器人劳动与人类失业、AI科研与后真相状况、人类道德新变化、AI技术治理社会以及避免AI文明危崖等与每个人息息相关的议题。 本书
本书主要探讨现代社会的算法如何生产社会智能问题。作者埃琳娜 埃斯波西托教授沿袭其导师尼可拉斯 卢曼的 社会沟通 理论,指出机器学习等数字技术不是人工智能,而是 人工沟通 。在算法和人类智能之间进行这种类比是一种误导。如果机器对社会智能有贡献,不是因为它们学会了如何像人类一样思考,而是因为人类学会了如何与它们进行沟通。 人工沟通 意味着人类的沟通伙伴可能不是人类,而是算法。鉴于算法在社会生活的各个领域中的广泛使用,本书深入探索了人类与算法互动、在线网络列表的激增、数字本文分析中的可视化、算法个性化与数字画像、数字记忆与被遗忘权、遗忘图像、算法预测、法律犃犐的透明度与解释等数字社会的前沿问题。在Chat GPT热潮持续升温的当下,相信本书在帮助中国读者准确了解当代数字社会的同时,也能促进我们对数字
如今,人工智能的迅速发展给人们的日常生活和工作带来了巨大的影响。要想让人工智能朝着人类智能的方向持续迈进,我们就应该让我们创造的硅基大脑像人类大脑一样有感知、有记忆、有决策、有行动。问题的难点在于,人类大脑由约1000亿个神经元构成,神经元间交流复杂,大脑掌管认知、意识,影响我们生活的方方面面。我们如何破解如此庞大的复杂系统的运行机制呢? 在《心智的10大模型》中,计算神经科学家格蕾丝·林赛深入探讨了数学模型在理解大脑中的关键作用。书中通过10个数学模型,从单个神经元到复杂的神经环路,再到整个大脑的行为控制,逐步展示了数学工具如何帮助科学家理解和描述大脑的决策、感觉处理、记忆等过程。本书不仅是一部科学史,也是一本前沿的神经科学指南,为读者呈现了神经科学与数学、计算机科学的跨学科融合,启
本书首先对人工智能的定义、历史及国内外发展趋势等方面做了详尽阐述,接着从Agent、搜索、推理、学习、进化、感知以及行动等方向分别对人工智能进行多角度的分析与学习,*后通过一些实际需求场景来说明人工智能在现今各领域方向的应用。 本书可作为高等院校数据科学与大数据技术、自动化、计算机等专业的本科或研究生课程教材,也可供计算机信息处理、自动控制、生物信息等领域从事人工智能方向研究的科技工作者和相关专业师生参考。
人工智能已经全面进入艺术领域,与许多艺术门类如电影、绘画、舞蹈、雕塑等都有不同程度的融合发展。本书涉及各艺术门类、计算机、软件工程、仿生科学等领域,立足社会需求,面向未来发展,着重解答3个问题:人工智能现在经典的艺术应用有哪些?其原理是什么?未来人工智能与艺术的融合角度和方式是什么?本书采用总分总的结构,首先介绍人工智能与艺术的历史渊源;其次按照文学、绘画、音乐、电影、戏剧、舞蹈、建筑、游戏、雕塑9个类别分别叙述人工智能的典型案例、原理和未来发展方向; 总结人工智能与艺术融合的一般范式、现存问题和可能的发展路径。 本书适合社会大众、不同门类艺术专业人员和研究者从广度、深度、专业延伸的角度掌握人工智能与艺术的发展脉络。本书也适合作为信息艺术院校、人工智能交叉学科、新文科等相关
本书对所有主要的深度学习方法和最新研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前最新成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时
本书主要是作者在脑-机接口(brain-computerinterface,BCI)或脑-机器人交互(brain-robotinteraction,BRI)方面的多年研究成果。该书详细地介绍BRI系统常用的脑信号产生机理和应用方法,全面地阐述以Cerobot为基本框架的非“侵入”式BRI系统结构,其中包括信号采集与处理、软件接口与混合编程、硬件设计与搭建等,并针对不同的脑电模式和机器人提供丰富的大脑与机器人交互的案例。
本书从机械臂的拟人化操作机理、运动规划与任务规划、技巧迁移方法及双臂协调操作等方面系统性地阐述了机器人拟人化操作的机器学习理论与关键技术,主要内容包括:基于人臂三角形的拟人化操作基础,拟人化操作运动学,拟人化操作的运动规划与任务规划方法,基于全局避障地图的拟人臂避障方法,基于肌肉疲劳的拟人化评价指标,以及人与机器人和机器人与机器人之间的同构、异构技巧迁移方法等相关理论和实验研究。
本书对所有主要的深度学习方法和**研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前**成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时各章内
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
无创式脑调制(noninvasivebrainmodulation,NBM)是一种采用电场或磁场调节神经系统活动的技术,已成为诊断、康复和治疗神经精神疾病的一个有效手段,同时也是研究脑生理、结构和功能的常用工具。本书以作者多年来相关研究工作为基础,结合NBM技术与神经计算领域的**发展撰写而成。内容深入浅出,在介绍电场神经调节效应和神经系统建模的基础上,从非线性动力学角度剖析了神经元的放电起始过程,系统阐述了电场对放电起始动态的影响规律,深入探讨了电场调制神经活动的生物物理机制。
本书围绕自律型机器人三要素(感知、动作以及智能),面向Python初学者讲解自律型轮式机器人的基础知识与制作。 全书共8章,主要内容包括自律型机器人的概念、机器人的运动方式、直流电机/舵机的控制、线控操作型机器人和遥控操作型机器人的制作、广播遥控机器人和网络遥控机器人的实现。
本书是作者在人工智能领域集群智能研究方向十多年研究成果的系统总结,在总结目前国内外该研究方向发展现状的基础上,介绍集群智能算法的改进、应用研究及新研究方向。改进方面包括:基于**方向引导的菌群算法和基于生物生命周期的群搜索算法,以及基于单目标和多目标等Benchmark优化问题的测试研究。应用研究方面包括:子群协作群搜索算法及机械结构优化设计问题的应用研究、两阶段遗传算法及车辆路径问题的应用研究,以及自主进化算法及频谱决策和频谱分配问题的应用研究。后着重介绍集群智能的新研究方向——集群动力学优化算法。
本教材是编者结合所从事的教学与研究工作,借鉴国内外同行*研究成果,为满足新时期本科与研究生教学改革与发展的具体要求而编写的。 全书共八章,包括概论、坐标系及其变换、机器人运动学、机器人运动学、机器人控制、机器人路径规划、机器人系统及典型应用以及机器人未来发展。在内容安排上做到循序渐进、由浅入深,既让读者全面掌握机器人学的基本知识,又让读者对现代机器人学的发展前景有一个了解。 本教材可作为计算机应用、自动控制、机械制造及其自动化、工业工程及其相关专业的教材,也可供在机器人技术领域工作的科研和工程技术人员参考。