AI狂奔的时代,当同事还在为PPT排版熬夜、为数据报表抓狂时,懂DeepSeek的人早已关灯下班 这不是魔法,而是工具碾压的硬核差距! 本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商业计划 专业攻坚 ,都可以用DeepSeek的 理工科大脑 与 深度思考 功能精准破局。 翻开本书,让DeepSeek替你完成80%重复劳动,用AI替你 伪勤奋 斩获升职加薪,把 加班 变成传说,在AI浪潮中率先抢占职业高地!
本书是人工智能工具DeepSeek的应用操作指南,手把手教用户从零起步,快速掌握DeepSeek的使用方法,从新手小白进阶到AI使用高手。全书涵盖了DeepSeek的基础理论、核心功能与多场景应用,从下载注册教起,重点讲解提示词的编写技巧,通过具体生动的场景化案例演示,聚焦DeepSeek在日常生活、家庭教育、职场工作、自媒体创作和金融投资等领域的实际应用,为读者提供各场景常用提示词和指令模版。本书力求为读者提供一整套系统化、操作性强的使用指南,既适合初学者快速入门,也为专业用户提供深度指导。
Josh Starmer博士在YouTube的账号 StatQuest 视频总观看量突破7000万次(2024年11月统计的数据),他帮助全世界各行各业的人赢得数据科学竞赛、通过考试、顺利毕业、成功求职或实现晋升,因此被大家誉为 硅谷的守护神 。他那独特的图文表达形式和幽默的语言风格深受观众喜爱,这本《StatQuest图解机器学习》结合了他创新的视觉呈现方式,深入浅出地阐释了机器学习的基础和高阶知识,是一本轻松理解机器学习的 漫画书 。本书前3章着重介绍了机器学习的整体框架和核心思想,自第4四章起,逐一探讨了各种机器学习算法:从基础的线性回归(第4章)和逻辑回归(第6章)到朴素贝叶斯(第7章)和决策树(第10章),最后介绍了支持向量机(第11章)和神经网络(第12章)。随着读者学习的深入,第5章、第8章和第9章分别介绍了机器学习的进阶知识和实用技巧,如梯度下
本书作为人工智能专业的入门书,带领读者初步学习和实践机器学习、深度学习的算法、流程和核心技术,并介绍了系统开发及开发环境,通过图解的方式将难懂的专业术语和算法表现出来,让没有相关专业基础的读者能够轻松入门。同时,本书还介绍了一些比较常用的网站网络服务,让读者能够学以致用。本书适合人工智能领域入门读者,也适合对人工智能感兴趣的其他领域读者学习。
本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架 YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停留在浅尝辄止,也不相信宣称的人人都能用ChatGPT赚钱。
本书是教授如何使用AI技术进行公文写作的实用指南。全书分为四章。第一章介绍了AI指令提问的原理和技巧,讲述AI时代提问的特点,以及如何向AI提出优质指令。第二章总结了多种实战方法与技巧,通过应用场景与示范案例,教读者如何针对具体场景向AI提问。第三章聚焦公文写作,涵盖常用AI写作工具和使用技巧介绍,以及如何通过向AI工具提问来指导各类具体公文的写作。第四章深入探讨公文写作的进阶技巧,介绍如何通过AI工具生成公文经典表述和结构化句式,助力读者高效提升公文写作水平。本书旨在通过AI赋能公文写作,提升职场公文写作的效率与质量,是企事业单位实用工具书。
本书基于学术写作的核心在于结构化的思维这一理念,全方位地介绍了如何应用 AI 辅助学术写作。AI 辅助学术写作的流程主要包括选题的确定、前言和文献综述的撰写、理论框架和研究方法的设计、研究框架与正文的组织、结论的构建、初稿的润色、标题摘要的撰写与投稿等方面。 本书力求为读者提供多样化的解决方案。这些解决方案依据不同的写作目标和策略制订,从而让读者可以根据具体需求选择。此外,本书还引导读者探索各种 AI 工具,应用好这些 AI工具有助于解决具体问题,如数据查询、参考文献管理、语言润饰等,极大地节省了学术写作的时间和精力。 无论是学生、教师、研究者,还是对学术写作有浓厚兴趣的读者,本书都能够帮助其更 好地理解人工智能在学术写作中的应用,在逻辑清晰、条理分明的框架内进行有效的学术写作,提高写作技巧,并
在人工智能的热潮中,也许我们一直过度关注技术的工具性,而忽视了技术的生存性。技术作为一种人类改变世界和分析世界的方法,也逐渐影响着人类对自我的认知。通过统计数据、数字模拟,人类增加了对世界的了解和控制,同时也增加了对技术的怀疑和不确定。特朗普的竞选团队曾充分利用人类对数据的怀疑进行公关。真实和虚构的分界在逐渐溶解。这一点在深伪技术中得到最好的体现。真实的数据被窃取,并用于捏造数字空间中的假象,用户开始相信假象。如果我们不立刻开始反思数字虚拟中蕴含的本质性权力,后果将是灾难性的。
申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。
《AI智能办公实战108招:ChatGPT Word PowerPoint WPS》通过8大专题内容、108个实用技巧,讲解了运用ChatGPT结合办公软件Word、PowerPoint以及WPS,实现AI办公智能化、高效化的方法。随书附赠了108集同步教学视频、90多个素材 效果文件、65个关键词等。 ChatGPT Word高效处理文档,讲解了运用ChatGPT检查与纠错、统计数据、处理文本、智能生成营销方案、根据提示词生成文本、优化文本用词、改写文章风格、编写论文大纲等内容。 ChatGPT PPT智能生成演示文稿,讲解了在ChatGPT中逐步生成PPT、生成PPT完整文稿,以及ChatGPT Mindshow、ChatGPT 闪击PPT、ChatGPT ChatPPT生成PPT等内容。 ChatGPT WPS生成办公文档与演示文稿,讲解了用ChatGPT生成WPS办公文档、旅游行程、培训计划、年终总结、辞职报告、分析报告、述职报告、商务演示PPT、活动策划PPT、行业分析PPT等内容。 最后通过一个综合案例 年终总结
社会科学(CSS)领域。文本详细描述了四个关键的方法,自动社会信息提取,社会网络分析,社会复杂性理论和社会模拟建模。第二版增加了许多问题和练习来强化、巩固、测试已经学习的内容,通过解决问题加深理解,并实践编写代码来实现想法。主题和特点:包含一千多个问题和练习,以及一个缩略词列表和词汇表;研究计算机和社会系统之间的异同;介绍了自动化信息提取的;探讨CSS中社会复杂性的度量、科学规律和生成理论;回顾社会模拟的方法论,涵盖变量模型和面向对象模型。
本书主要介绍了大模型的发展与演变、相关技术、应用场景、未来发展趋势和前景。本书首先回顾了大模型技术的起源和发展历程,然后介绍了数据预处理、Transformer、预训练与微调、模型推理和PyTorch框架等技术。此外,本书还通过具体的案例和实践展示了如何应用大模型技术来解决实际问题。本书旨在帮助读者全面了解大模型技术的发展与应用,并推动其在各个领域的应用和发展。 本书图文并茂,理论翔实,案例丰富,适合从事大模型开发的科研人员以及广大的开发者作为技术参考和培训资料,亦可作为高校本科生和研究生的教材。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
本书的目标,是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松地掌握机器学习的基本知识,从而拥有相关的实战能力。 本书通过AI 小白 小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。本书所有案例均通过Python及Scikit-learn 机器学习库和Keras 深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。 本书适合对AI 感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人,用以入门机器学习领域,建立从理论到实战的知识通道。
本书通过深入浅出的方式带领读者探索人工智能的世界。书中首先介绍了人工智能的基本概念、应用场景以及发展历程。并对神经网络、遗传算法、蒙特卡罗法、自然语言处理等人工智能技术的原理和应用场景进行了分析,并探讨了人工智能的未来发展趋势以及机遇与挑战。
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。