本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
《笛卡尔几何》的问世,被誉为数学史上的伟大转折。笛卡尔对数学的重要贡献,正是他在《笛卡尔几何》中所创立的解析几何。他的这一成就,为微积分的创立奠定了基础,而微积分,又是现代数学产生和发展的重要基石。 《笛卡尔几何》被后世数学家和数学史家视作解析几何的起点。该书共分三卷:卷讲解尺规作图;第二卷讨论曲线的性质;第三卷借立体和 超立体 作图以探讨方程的根的性质。 笛卡尔力图建立一种 普遍 的数学,即把任一数学问题转化为代数问题,继而把任一代数问题归结为求解一个方程式,这便是 解析几何 ,或称作 坐标几何 。而平面直角坐标的建立,正是解析几何得以创立的关键。
圆作为平面几何的一部分,与其他任何组成部分具有同样的重要性。此外,它还是*一种可以画在球面上的 线 。这使得圆在几何学世界中也许比直线更加无所不在,因为直线在球面几何中是不存在的。本书考察的就是圆在几何学中发挥作用的那些*常见方面。 全书共11章,涉及圆所呈现的种种几何奇观,包括圆的历史、圆的各种关系、圆填充问题、尺规作图问题、切圆探究、摆线等,以及艺术作品和建筑中的圆,还用一整章讲述了球面几何学。
本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平?v先生的思想文集。书中以广中平?v先生与 奇点解消问题 的故事为线索,讲述了广中平?v在挑战 奇点消解问题 的过程中,对 数学学习 数学教育 以及 创造性思维 的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平?v先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平?v先生数学思想以及创造性思维的佳作。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
《自然哲学的数学原理》是牛顿所写的旷世巨著,是他 个人智慧的伟大结晶 。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。 《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明白四次方程和三次方程的区别,顺便熟悉极限的概念,甚至能学会为你的金字塔建造一个水平的平台。 本书适合所有爱好数学的人阅读。
我们的生活中充满了各种不确定性,这导致很多事情并不能完全被人为控制。这种不确定性时而让人感到惊慌、焦虑,时而又令人喜出望外。本书以案例分析的方式,解释概率、随机性和不确定性等数学概念,揭开概率事件背后的数学原理。本书案例丰富,深入浅出,充满知识性、趣味性。适合作为学生的课外读物,拓展学生的知识面,教育人们运用概率论的方法思考问题、分析问题、解决问题。
数学就是一个与不可能发生近距离冲突的故事,因为数学中的一切伟大发现都接近于不可能。有许多表面看来不可能的例子,它们对于数学而言很重要。 渴望不可能 是数学中取得的许多进步的源头。本书中的大多数例子:无理数、虚数、无穷远点、弯曲空间、理想,以及各种类型的无穷 这些概念初看起来是不可能的,因为我们的直觉无法领会它们,但它们在数学符号体系的帮助下是可以被精确理解的,而数学符号体系是对于我们的感官的一种技术延伸。 本书涉及看似不可能的艺术、文学、哲学和物理学,摆脱了对数学概念的狭隘解释,拓宽了学生的视野。
本书精选了近两百个中学生能够看懂的 无字证明 . 无字证明 一般是指仅用图形而无须语言解释就能不证自明的数学结论,其形式往往是一个或一组特定的图片,有时也配有少量的解释说明.本书的每个无字证明都是一个趣题,这些无字证明涵盖了中学数学的方方面面,是罕见的直观反映数学美和数学本质的阅读材料,可作为中学生的课外读物,也可作为本科和高职师范类专业的教材.在新的课程标准强调直观想象这一核心素养的背景下,本书可满足中学和大学数学教师对教学素材的需求.
你知道这些运动背后的数学知识吗? 为什么跳高要采用背跃式?为什么博尔特不用跑得更快也可以打破世界纪录?罚点球的策略是什么?穿着斥水性泳衣会带来什么后果?为什么弹跳球看起来不遵守牛顿运动定律? 本书通过解答100个问题,揭示了体育运动(如跑步、跳高、游泳等)以及其评分系统的神秘面纱,展示了奥运会背后各种鲜为人知的秘闻。 不论你是运动员,希望跑得更快,跳得更高;还是体育爱好者,希望更多了解你所热爱的体育运动,本书内容将令你深深着迷,欲罢不能。
卡尔曼滤波技术作为一种很优估计方法,迅速从导航领域推广应用到了目标跟踪、故障诊断、多传感器信息融合以及经济学等诸多领域。本书介绍了卡尔曼滤波的基本原理及其实时应用。本书理论讲解很好透彻,同时结合实时应用分析理论方法,适合作为相关课程的教材或供相关领域的研究人员参考。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为提高篇,分为三角形与四边形、相似、圆、勾股定理等四个章节。书中详细地证明了常见的几何定理,并指导读者通过这些定理掌握高效的解题方法,培养正确的几何思维。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
《从空间曲线到高斯-博内定理》共分四个部分,十个章节,是论述空间曲线和曲面理论的一本入门读物。 部分阐明了本书使用的数学工具:向量的代数运算以及变向量的求导运算。第二部分讨论了曲线的基本概念,引入了弧长参数,也讨论了描述空间曲线变化的曲率与挠率这两个几何量。后,证明了弗雷内-塞雷公式,并以此证明了曲线的基本定理:曲线的形状是由它的曲率与挠率决定的。第三部分主要讨论的是曲面上的三个基本形式以及曲面上的一些曲率。同时也讨论了曲面上的一些方程式,引入了黎曼曲率张量,并以此证明了高斯的 了不起定理 。 第四部分讨论了曲面上的测地线,测地方程,以及欧拉公式,罗德里格斯公式,与恩尼珀定理等。在本书的后一章 第十章中,证明了计算测地曲率的刘维尔公式,并用它证明了闭曲面的高斯-博内定理。据此,引入闭曲面的欧拉示性数,证明