本书一方面,以《教师教育课程标准》、《教师资格标准》和《数学学科知识与教学能力》(初级中学)考试大纲为依据,以指导和辅助学生有效整合教师教育相关大学学科知识学习为指向,密切结合学习与应试需求,使学习者通过阅读和学习本教材,具有适应初中教学和和国家教师资格考试相关科目的数学学科知识与教学能力;另一方面,以初中数学教师应具有的数学学科知识与教学能力为核心内容,以已有考试真题和命题趋势为导向解读数学学科知识与教学能力中各类知识的学习要点和应试策略。
本书是著名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法一一合情推理(即猜想)。本书通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,本书的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中*部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯 李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的伟大人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;*
本书首次出版于1884年,一百多年来一直吸引着各个年龄层次的读者,已成为科幻小说的经典之作。 本书的主角是生活在二维的平面国里的一个正方形,它向读者介绍了二维世界中的各种奇异现象,并带领读者游历了一维的直线国和三维的空间国,还提出了它对更高维的思考。作者的奇妙构思提供了对维度概念的直观、生动的刻画,并能引发读者更深入的思考。不仅如此,作者还借此讽刺了英国维多利亚时代的性别歧视和阶级制度。 这是一本集数学、科幻、讽刺于一体的奇书。在作者的精心阐述下,本书不仅有趣,而且有益,曾被翻译成多国文字,并以电影、动画片等形式出现。相信任何对科幻、科学、数学、写作或社会建制感兴趣的人都会喜欢这本书。
本书着重讨论波动、热传导以及泊松方程这三类最典型的二阶偏微分方程,同时也将对一些可用于求解偏微分方程的重要分析工具,如特殊函数等,进行简单讨论.为了帮助读者初步形成综合运用数学方法解决物理问题的能力,本书的核心内容是偏微分方程,它是刻画在演化中蕴含守恒之物理世界诸多机制的重要手段.
这是一本阐述控制论的理论和它在各方面应用的综合性、概论性的书,作者维纳是控制论的创始人之一,他就是通过本书奠定了“控制论”这门新兴学科的基础.书中关于怎样把机械元件和电器元件组成稳定的、具有特定性能的自动控制系统,关于怎样用统计方法研究信息的传递和加工等方面的讨论对于自动控制、通信工程、计算技术等方面有关的科学工作者有重要参考价值,书中关于如何应用控制论研究人的神经和大脑的活动,研究生物的适应和生殖机制,对生理学、心理学、医学工作者有参考价值,书中关于本书诞生过程的历史叙述,对如何发展边缘学科,有一定的方法论上的意义,本书是研究控制论的重要的、基本的参考文献之一。中译本第二版增加了原书1961年第二版新增加的内容。
本书为“十二五”普通高等教育本科国家级规划教材,是《中国科学技术大学数学教学丛书》之一。主要介绍在应用中经常遇到的几种基本随机过程,如Poisson过程、更新过程、Markov过程、平稳过程、Brown运动、Ito微分公式、线性随机微分方程,以及鞅过程和停时。全书材料丰富,每章结合大量有实际背景的例子来解释基本概念,并配有一定量的习题。
《数学与人文》的首卷本登载了对主编的访谈,他们对本丛书的宗旨做了很详细的阐述。 在首卷本的 数学科学 、 数学星空 、 数海钩沉 、 数学魅力 、 数学教育 等栏目中,讲述了中外数学史和众多名家的生动故事、趣闻轶事,介绍了数学教学和学术研究中的经验体会,让读者看到了数学的趣味性、严谨性和它的无处不在。 《数学与人文》的创版适逢新中国成立60周年大庆,所以在首卷本中设立了新中国60年数学发展的专题。其中刊登了丘成桐教授撰写的 中国高等教育 一文,他从一个数学大师的角度纵横古今地畅谈了他所理解的中国高等教育的发展、现况、问题和展望;回顾了改革开放以来的中国数学会,讲述了国际数学家大会在我国召开的曲折过程;还介绍了三个数学分支(代数,数论,调和分析)的发展。 我们期望本丛书能受到广大学生和学者的关注和欢迎
《数学与人文》丛书第三十三辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑的主题是数学历史,收录了当代杰出的数学家对各自所从事的学科领域的回顾和展望。文章包括丘成桐先生总结从古希腊到20世纪末数学发展的 数学史大纲 , 第十届清华三亚国际数学论坛 首届当代数学史大师讲座 上几篇精彩的报告,20世纪伟大的数学家陈省身先生和Andr Weil教授关于数学史的演讲。本辑还登载了有关趣味数学和数学诗文的文章和若干词作。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对办好本丛书提出建议,更希望丛书能成为大家的良师益友。
科学是认识真理的方式吗? 自然现象的本质是什么?为什么会存在自然现象?我们能够在科学中找到答案吗? 科学家们就某个问题达成了 共识 ,是否意味着这个科学问题已得到解决? 无论你是科学爱好者还是科研工作者,在学习和运用科学知识的过程中,也许都产生过上述疑问。这些疑问都涉及科学的内涵,即科学研究的对象是什么?科学方法包含了哪些方面?它们之间的关系是什么?科学的边界究竟在哪里?在具有了一定的科学知识或背景后,脑海中就会自然浮现出这些问题。那么,对于这些问题,你是否已有了明确的答案呢? 在这本小书中,美国加州大学圣迭戈分校的迪?文特拉教授分享了他在二十多年的科研和教学过程中的心得体会。作者以轻松诙谐的笔触,系统介绍了实验观测、逻辑、假设和理论等科学方法的核心要素,以及它们之间的内在联系,进
《数学与人文》丛书第三十二辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分3个栏目,包含了13篇文章。 专稿 栏目收录了丘成桐先生的 中国的高等教育 以及杨乐院士的 几点史实的澄清 。 数学的教与学 栏目刊载了张顺燕教授的文章 数学文化与数学教育 、朱富海教授的文章 高中数学与大学数学 以及Holger Dambeck关于俄罗斯数学的文章。 融汇中西教育论坛 收录了2019 年6月在北京师范大学举办的届 融汇中西教育论坛 会议的8 个发言的文章。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对办好本丛书提出建议,更希望丛书能成为大家的良师益友。
本书缘起于数学大师陈省身先生2003年精心编辑的2004年《数学之美》挂历,这是对数学史高度概括的科普作品,在数学界和高校圈引起了不小的反响。孟道骥教授的这本浅读的小册子,以挂历中每月的数学科普内容为主题,分章进行详细的解读,讲述了复数、正多面体、刘徽和祖冲之、圆周率的计算、高斯、圆锥曲线、双螺旋线、国际数学家大会、计算机的发展、分形、麦克斯韦方程、中国剩余定理等内容,这也是对陈先生普及推广数学文化工作的好纪念。 本书适合一切喜爱数学文化的读者阅读,也可供从事数学普及工作的相关人员参考。
本书介绍了从欧几里得、费马、欧拉、高斯以来2000多年中素数研究的重要成果、问题、思想和方法,包括素数有多少、如何识别素数、是否有定义素数的函数等一系列具有重要理论意义和应用背景的问题,并介绍了相关问题至2003年的最新记录。
《数回》是“世界谜题锦标赛直通车:形形色色的智力谜题”丛书中的一本。全书斯200个题目,集结了5x5、6x6、7x7和9x9四种题型,每种题型的难度设置由易至难,循序渐进。本书还配备了独特的解题方法介绍,不仅能够使初次接触谜题的爱好者轻松上手玩谜题,而且也是常玩智力谜题的高手们练习和提高解题水平的手册。
每年在Lehigh大学, 都会有一位著名的数学家作数学的Pitcher讲座。 本书主要内容是基于Fritz John 在1989 年4 月给出的Pitcher 讲座。 本书探讨了非线性双曲偏微分方程初值问题解的大范围存在性问题。典型的非线性问题在广泛的课题中虽有许多结果却少有一般性的结论, 因而作者将自己严格限制在此领域的一小块中, 在其中有可能会分辨出一些一般性的模型。在给出对此领域中近期研究的陈述时, 作者考察了使解能够在有限时间内 炸开 的方法, 哪怕是只具有小的和非常光滑初值的情形。对于拟线性方程的各种类型, 这个时间强烈地依赖于初值的维数和 大小 。本书的重点是在三维空间中非线性波动方程的奇点形成。