《自然哲学之数学原理》是牛顿一生中重要的科学著作,也是经典力学的集大成之作。在牛顿之前,天体运动和地上运动是被分开来考虑的。伽利略提出了运动的相对性,运动的合成和自由落体的法则,笛卡尔讨论了惯性原理的动量守恒法则;开普勒提出了行星运动三定律。牛顿的主要工作是将天体和地上的运动研究成果统一起来,并从数学上给予适当的证明。《原理》给出了著名的牛顿运动三大定律以及引力和距离的平方反比关系,构建了一个完整的经典力学体系。全书是按照几何学的形式以一种公理化的体系写成的。在科学史和思想史上,《原理》一书都具有极其重要的位置。
《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛 数论知识教材. 书中涵盖了整除、公约数、算术基本定理、数论函数、同余方程、模 p 多项 式、二次剩余、p进赋值等主题.通过精彩的例题重点展现了带余除法、裴蜀定理、 高斯弓I理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估 计、局部一整体原则的应用.课后共有二百多道习题供练习. 本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的 人员参考使用.
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
《强基计划数学攻略》是一本针对准备参加强基计划的高中生的数学教材,涵盖了数学基础知识的主要内容。本书的主要内容包括数与方程、不等式、集合与逻辑、函数、三角比与三角函数、数列、微积分初步、平面向量与复数。 本书的特色在于,针对每个主题,书中都有大量的例题和习题,以及详细的解答和解析,可以帮助读者深入理解数学的基本概念和应用,同时提高数学解题能力。此外,本书还提供了一些实用的技巧和方法,帮助读者更好地掌握数学知识。 适合读者对象是需要系统地学习强基计划基础知识的学生和初学者。同时,本书也适合数学教师使用,作为课堂教学和辅导材料。 总之,《强基计划数学攻略》提供了全面而深入的数学知识体系,对于希望掌握数学基础知识和提高数学解题能力的读者来说,是一本非常有价值的参考书。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。除去可以了解各种有趣的数学知识和八卦,你还可以亲自参与到数学当中,亲自制作数学游戏,试着解决数学谜题。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2010年版的译文进行了全面整理提升。斯图尔
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为 论小于一个给定值的素数的个数 。在这篇论文的中间部分,黎曼作了备注 一个猜测,一个 假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究 和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立?已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制 术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。在《素数之恋》中,极其明晰的数学阐释文
《2的平方根:关于一个数与一个数列的对话》以师生对话的形式展开讨论。博学的老师引导学生一步步逐渐熟悉数学推理,让学生体会数的概念远比初能想见的微妙得多。年轻的学生被2的平方根这个神奇的无理数所吸引,踏上了一段奇特的数学之旅,随后他又遇见了令他着迷的数列。强烈的好奇心驱使他迫不及待地投入工作,去了解这个神奇的数,了解这个数与数列之间的联系。本书所使用的代数方法相对简单,但非常巧妙,让读者体会到寓教于乐的态度和精神。
如果人们生来就有 数的本能 ,如同他们具有 语言天赋 一样,那为什么不是人人都能搞数学呢?数学家、科普作家基思 德夫林在他的著作《数学犹聊天 人人都有数学基因》一书中,通过明确而有说服力的分析,提出一个新颖的观点:数学能力和语言能力有相通之处,数学对象之间关系的推理法则与社会人文关系的推理法则在本质上并无二致。通过把数学牢牢植根于人文氛围之中,德夫林对如何理解数学、如何提高数学能力、为什么数学家认为数学不难等问题做出了全面解释。对任何迷恋数学、憎恨数学或者被数学吓倒的人,本书都值得一读。
(第二版)张景中著北京内容简介本书从小学生知道的三角形内角和的知识以及三角形面积公式出发,举一反三,推陈出新,直观而严谨地给出正弦的新定义.在此基础上,轻松得到正弦定理、和角公式、勾股定理等一系列三角公式和几何定理,揭示出几何、代数和三角的基本知识之间的密切联系,以三角为主线,构建了初等数学的新体系.书中思想新颖,方法简明犀利,说理严谨,特别着力于从平凡处发掘创新的思路,引导读者发现问题深入思考.全书分为5个部分:正弦和正弦定理;正弦和角公式;余弦和余弦定理;四边形;圆和正多边形. 大体上覆盖了初中应掌握的几何、代数和三角的基本知识.书中每节都安排了例题和习题.
图论是组合数学中一个重要而且发展迅速的主题,不仅在数学研究中占有重要的地位,在数学奥林匹克竞赛中也是如此。本书介绍了图论的相关知识,全书共分十个章节,分别为:引言、欧拉回路和哈密顿圈、树、色数、平面图、二部图中的匹配、极图理论、拉姆塞理论、有向图、无限图。每一章节中都配有相应的例题及习题,并且给出了详细的解答,以供读者更好地理解相应的内容。本书适合高等院校师生及数学爱好者研读。
本书的第1章到第7章介绍了一般线性代数课程包含的内容,在此基础上还介绍了仿射空间、射影空间、外积与外代数、二次曲面、双曲几何,给出了群、环和模的基本概念,后还阐述了表示论的基础知识.本书是关于线性代数的讲义,对于一些重要的知识和需要仔细思考的细节,作者会不惜笔墨力图把问题讲清楚,这是本书与同类书籍相比的一大优点.本书作者是优秀的数学家与数学教育家,读者不仅能从本书中学到基础的数学知识,还能从中理解作者对代数学的感悟. 本书适合于数学系专业的师生以及数学爱好者参考使用.
在《算术研究》的序言中,高斯便已明确指明了本书的研究范围: 数学中的整数部分,不包括分数和无理数 。《算术研究》的正文则分为七章。第1章讨论数的同余;第二章讨论一次同余方程;第三章讨论幂剩余并证明了费马小定理;第四章讨论二次同余方程;第五章系统扩展了二次型的理论(这使得高斯必然地成为了群论的先驱之一);第六章讨论了前述理论在特殊情况下的运用;第七章讨论了分圆方程,这一章也被认为是本书较为精彩的内容。
《微积分的历程:从牛顿到勒贝格》介绍了十多位数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 br 《微积分的历程:从牛顿到勒贝格》兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
为什么一提到数学,有的人望而生畏,有的人避而远之,有的人三缄其口?数学真的很枯燥、很乏味吗?数学真的这么令人恐惧、令人却步吗?如果你自认为数学很糟糕的话,那就赶紧翻开这本书,身为知名数学教育学家的波萨门蒂博士,根据多年的经验,从普通人的视角出发,深挖了数学 不得人心 的根源,并通过数学在各种不同领域中的生动有趣、超乎想象的大量实例,不仅纠正了许多人对数学的误解,还充分展示了数学内在之美,呈现了一个让人耳目一新的、趣味无穷的数学世界。可以说,无论你从事什么职业,数学都是至关重要的。而本书在帮助你摘下看待数学的 有色眼镜 的同时,还能助力你攻克如何吸引孩子爱上数学这个难题。
《从矢量到张量:细说矢量与矢量分析,张量与张量分析》是 高等数学启蒙小丛书 系列中的一本。 张量的概念由 G.Ricci 于19世纪末提出的,研究张量旨在为几何性质和物理规律的表达寻求一种在坐标变换下不变的形式,在相对论中得到广泛应用。它既是物理学概念,又是一个数学的概念,是微分几何研究的一个方向,也是现代机器学习的基础。但是如果直接讲解,读者很难理解。 既有大小又有方向的量(在物理学中称作矢量,在数学中称作向量。) 则相对容易理解,作者以此为起点,分为六个部分,二十个章节,一步步向读者介绍,直至张量。 如:部分从矢量的袋鼠运算讲起,详述矢量的矢量混合积;第二部分,引入矢量三重系;第三部分,先讲解变矢量的微分运算;第四部分,讨论矢量场的线积分与面积分;第五部分,从曲线坐标入手,讨论曲线坐标下的向
本书的作者都是杰出的数学家,也都有一个业余爱好,魔术和杂耍。从他们的这本书中,你可以了解到一些花式洗牌法的数学性质;一些用到中国古代占卜书《易经》的戏法,还有奇偶性是怎样在魔术中起作用的。 它不仅是一本出色的、写法不拘一格的数学魔术导引,而且在书的末尾作者还提供了为数学魔术做出巨大贡献的魔术师的照片和传略。 不会再有一本如此条理清晰地、如此饶有风趣地对广阔的数学魔术领域做出一番综述的佳作了。
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量*手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是著名数学家的贡献,是全书的一大特色。本书所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
许多人认为数学离我们很远,除了买菜根本用不着。但他们错了。在英国,280万数学科学从业者一年就为经济贡献了2080亿英镑 也就是说,10%的劳动力贡献了16%的经济产值。 为什么公众对数学的认识与现实之间存在如此巨大的鸿沟?作者在书中探讨了这个问题,并从政治、医疗、气候、出行、娱乐、信息安全、智能生活等多个角度切入,展示了在日常生活的背后,数学如何以令人惊讶的方式发挥着至关重要的作用。