9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及值,作图,轨迹,平面闭折线,圆的推广十个专题.对平面几何中的 500 余颗璀璨夺目的珍珠进行了系统地,全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果, 本书中的1 500 余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及成果, 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设"竞赛数学""中学几何研究"等课程的教学参考书.
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
《微积分的奇幻旅程》9787115525062 定价:35.00 苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦! 《数学定理的奇妙世界》9787115530004 定价:35.00 勾股定理应该是大家非常熟悉的数学定理,但你知道它在*初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。 量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域尖端知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特
本书汇集了历届国际数学奥林匹克竞赛试题及解答.该书广泛搜集了每道试题的多种解法,且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强.本书可归结出以下四个特点,即收集全、解法多、观点高、结论强. 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书详尽地介绍了泛函分析的基本内容与方法,并结合理论介绍了泛函分析对各种分析问题的应用。本书的内容包括预备知识、Banach空间及Hilbert 空间的一般理论、线性算子的一般理论、赋范环和谱表示、向量格及其表示等。作为应用,本书还介绍了广义函数、Fourier变换以及偏微分方程、半群的分析理论、遍历理论与扩散理论、线性与非线性发展方程的积分等。 本书可作为高等学校数学专业泛函分析方向本科生及泛函分析、偏微分方程、概率论等专业研究生的参考书,对于纯粹与应用数学工作者以及理论物理工作者也有一定参考价值。
本书介绍了45个著名数学问题的极富创造性和独具匠心的证明。其中有些证明不仅想法奇特、构思精巧,作为一个整体更是天衣无缝。难怪,西方有些虔诚的数学家将这类杰作比喻为上帝的创造。这不是一本教科书, 也不是一本专著,而是一本开阔数学视野和提高数学修养的著作。希望每一个数学爱好者都会喜欢这本书,并且从中学到许多东西。 第六版在上一版的基础上进行了扩充和修订,其中包含了一个关于Van der Waerden积和式猜想的全新章节,以及其他章节中高度原创而优美的新证明。 2018年 Steele数学阐释奖 颁奖词节录: 想要写出一部可以被各个层次和背景的人阅读和欣赏的数学书几乎是不可能的,但Aigner和Ziegler以精湛的文笔完成了这一壮举。 这本书对数学有着不可估量的作用,为非数学家阐明了当数学家在谈论美时他们在谈论什么。
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
拉卡托斯是著名的数学哲学家和科学哲学家,是现代科学哲学 历史学派 的主要代表人物之一。他的主要学术著作在死后由他人整理成《哲学论文集》出版,第 1卷名为:《科学研究纲领方法论》,第2卷名为:《数学、科学和认识论》。《数学、科学和认识论》分为三部分14章内容,部分 数学哲学 ,第二部分 批判的论文 ,第三部分 科学与教育 。
本书极具特色,它既不是一般的数学教材也不是一般的数学史教材,而是一本通过数学史来讲授数学的教材,本书的作者通过讲述某些数学论题,组织与之相关的概念、人物、思想、问题的背景及发展中的故事等材料,赋予读者数学是统一的观点。 本书原版自1989年出版版以来,至今一直受到数学评论界的高度评价和读者的欢迎。本书将对提高数学专业师生及广大爱好数学人士的数学修养很有价值。第三版在原来第二版的基础上做了不少修订, 新增了部分章节并添加了很多练习,将带给读者更多的惊喜! 本书包含了诸多在一般的本科生数学史教材中不常见的有趣的主题。事实上,这些主题如果从历史的角度来阐述,将能使学生更好地理解和欣赏其中的数学思想 David Parrot,澳大利亚数学会 本书非常生动且言简意赅 不仅能激发学生和教师的兴趣,对广大数学爱好
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,第一卷为单变量情形,第二卷为多变量情形。 第一卷中译本分两册出版。本书为第一卷第一分册,包括前三章,主要介绍函数、极限、微分和积分的基本概念及其运算。本书包含大量的例题和习题,有助于读者理解本书的内容。
《无穷分析引论(下)》为微积分预备教程,为弥补初等代数对于微积分的不足,以及为学生从有穷概念向无穷概念过渡而写,读者对象是数学工作者和有一定数学基础的广大数学爱好者。该书在数学史上地位显赫,是对数学发展影响大的七部名著之一。
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
本书主要介绍高中阶段内解答圆锥曲线题目的主要方法,分为三篇:曲直联立,技巧与方法,二级结论与命题背景.共三十二章,其中每一章包括例题和课后练习.本书收录了近20年大多数关于圆锥曲线的高考真题和近年的优质模拟题,以及部分竞赛题目. 本书适合高中学生培优使用,也可供参加高中数学竞赛的学生使用,还可供高中数学教师备课和高中数学竞赛教练选题使用.
有限元法是当今工程分析和科学研究不可或缺的方法,在科学计算领域有限元法不仅实用、高效,而且应用广泛。全书共12章,分为上、下两册,上册包括第1 5章,下册包括第6--12章。本册主要内容:基于固体力学和结构力学的非线性有限元分析,传热、场和不可压缩流体流动问题的有限元分析,静态分析中平衡方程组的求解,动力学分析中平衡方程求解,特征问题的求解基础,特征问题的解法,以及有限元法的实现。本书所介绍的方法通用、可靠和有效,虽然是*基本的方法,但在将来很厂一段时间仍会得到不断应用,这些方法也将成为该领域*发展的基础。本书原著作者Klaus-J rgen Bathe教授在美国麻省理工学院(MIT)的网页有大量的资料,如学术论文、讲课视频、习题答案和电子教案等,读者可学习、研究和使用。 本书内容全面,实例丰富,可供高年级本科生和研
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,第一卷为单变量情形,第二卷为多变量情形。 第二卷中译本分为两册出版。本书是第二卷第一分册,包括前三章。第?章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基本概念。原书有练习解答,分别编入各分册。 译者(按内容顺序):邵士敏、周建堂、张锦炎(第一章)、刘婉如(第二章)、林建详、张顺燕、朱德威(第三章)、林源渠(解答)。
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
本书是笔者的第三本新书《从分析解题过程学解题:高考压轴题与竞赛题之关系探究》的延续,也即笔者继续进行高考难题与一些竞赛题之关系的探究. 本书重点探究如何从一道已有题目挖掘出若干新题,并阐述问题解法来历的形成过程.本书与前一本书略有不同,最大的不同就是习题增加到5个方面的内容,共300多道.其中有高考较难问题(比率较大),也有竞赛方面的问题.本书内容不是习题与解答的简单堆砌,而是尽力给出大部分习题的来历和解法的思考过程及其演绎结论,它们都是笔者近40年对数学教学的长期追求和探索的结果. 本书适合高中生、中学数学教师、大学师范生以及数学爱好者参考阅读.
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了 知识问题化 题目典型化 方法通俗化 的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。 本书可供中学教师教学,以及学生学习参考使用.