偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用.书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到了事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
《高等数学》是按照新形势下高职教育改革的精神,结合编者多年的教学实践编写而成的。全书共分八章,主要内容为:函数、极限与连续,导数及其应用,不定积分,定积分及其应用,微分方程,多元函数微积分,无穷级数,线性代数初步。本书编写以“必需、够用”为度,在传统数学体系基础上,进行了必要的整合和创新,力求降低难度、分散难点,简明实用,通俗易懂,符合学生心理特征和认知规律。本书与同时出版的教学辅导用书《高等数学辅导与检测》(张绪林、秦少武 主编,化学工业出版社出版)配套使用。 本书可作为高职高专、成人教育及同类学校各专业的高等数学教材或学生的自学用书。也可作为专升本的教材或参考书。
本书是理工医农各专业的大学生学习“高等数学”课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生 好地理解“高等数学”课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有习题答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这不仅可以开拓学生的解题思路,帮
《高等数学(第2版)(套装上下册)》是以*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收编者们多年来教学实践与教学改革成果编写而成的。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》分为上、下册.上册含函数与极限、导数与微分、微分中值定理与导数应用、不定积分、定积分及其应用、微分方程等内容,下册含向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数等内容.每节均配有习题,每章配有综合练习题,书末附有习题参考答案,便于教与学。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》可供高等本专科院校工科各专业使用,也可供其他专业参考。
《高等数学(含练习册)(上册)》是根据编者多年的教学实践经验,参照制定的“工科类、经济管理类本科数学基础课程教学基本要求”,以及教育*颁布的“全国硕士研究生入学统一考试数学考试大纲”中有关高等数学部分的内容编写而成,分为上、下两册。 《高等数学(含练习册)(上册)》为上册,主要内容包括极限与函数的连续性、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和常微分方程。
苏保河等编的《高等数学/高等学校通识课程教材系列》共分为九章,包括函数与Mathematica简介、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、无穷级数、多元函数、微分方程与差分方程简介等内容。其中章至第六章由苏保河编写,第七章至第九章由刘中学编写。各章配有习题,并附有习题参考答案。本书的特点是将功能强大的计算机和数学软件 Mathematica融人高等数学教学之中,力图降低学生的学*担,提高学生的数学能力。参加本书审稿的有:吴广庆、杜萍、王为民、洪莉、张越等,全书由苏保河教授审核定稿。 《高等数学/高等学校通识课程教材系列》适用于经济管理类各专业本科生和对数学要求不太高的理工医农各专业本科生作为高等院校“高等数学”(或“微积分 ”)课程的教材或教学参考书;尤其适用于
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书前两章研究出土算术文献的文本和思想内容。主要创新点是:提出两种整理出土算术文献文本的新方法;证明清华简《算表》有开平方功能;为简牍性质问题提供新线索。第三。章讨论学界判断算术文献成书年代的主流方法:该方法针对的是度量衡等时代信息 的零星信息,但在一本已经定型的书中,这些信息恰恰是 容易被后代改动的,不能作为主要依据。在此基础上,作者提出新的解决思路。第四章研究数学与儒学的互动。第五章研究数学与史学的互动,主要是解决其中跟数学有关的疑难问题,比如讨论《史记》记载的孔子俸禄和《汉书》记载的汉代“提封田”(领土面积)。后两章是目前学术界较少关注的。
本书根据高等院校理工类本科专业高等数学课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应二维码即时实现实验操作。本书共分上下两册,本册包括函数与极限、一元微分学、一元积分学、微分方程等知识。本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例子,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.《BR》本教材共十二章,分上、下两册.上册内容:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数与空间解析几何;下册内容:多元函数微分法及其应用,重积分及其应用,曲线积分与曲面积分,
高等数学(理工类?第五版)(上册)的教学参考书,根据高等院校理工类本科专业高等数学课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。内容包含函数与极限、一元微分学、一元积分学等内容的学习辅导与习题解答。
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。
本书是河南省数学教学指导委员会推荐用书.本书根据地方院校高等数学课程教学大纲的基本要求,结合作者多年的教学研究和教学经验编写而成,内容包括函数与极限、一元函数微分学及其应用、一元函数积分学及其应用、常微分方程、向量代数与解析几何、多元函数微分学及其应用、多元函数积分学及其应用、无穷级数和数学实践与数学建模初步.全书注重体现高等教育大众化背景,顺应教育教学改革新常态,着力构建完备的数学知识体系架构,强调数学思想方法渗透,在基本概念讲解、基本内容处理、典型例题引入、数学能力和素质提升等方面,力求做到结构完整、脉络清晰,便于读者理解和掌握.