《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
本书根据工科数学课程教学基本要求中线性代数部分的要求编写而成。内容包括行列式、矩阵、向量空间、线性方程组、矩阵的相似对角形和二次型共6章,所需学时为30学时。 本书可作为高等工科院校各专业的教学用书和教学参考书,也可作为大学专科及高等职业院校的教学用书及自学用书。
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为“论小于一个给定值的素数的个数”。在这篇论文的中间部分,黎曼作了一个附带的备注——一个猜测,一个假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立? 已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。 在《素数之恋》中
数作为产生自然数的原本形式,它已有上万年的历史。虽然有史以来,人们就已应用敷数这一计数方法,但在数学研究领域却完全忽略了“数计数”这种基本的数学形式,使之成为数学研究中的一项空白。在本书讨论的整个过程中,根据数这种原本形式表现出的性质与规律,创造出了“薛海明筛法”,从根本上改变了“古典筛法”以及现代数论中应用的一些新的筛法理论工具,并对素数的判别,合数的分解,求素数的分布个数,孪生素数的分布,哥德巴赫猜想等有关素数难题全部归纳为系列化讨论。它将系统地告诉我们,商数、余数、合数、素数、偶数、各种因子等多种不同形式的有序分布规律与各数之间的关系。这种全部运用系列化探讨自然数的方法,对数学的发展有着深远的意义,也是开启对敷数性质,规律研究的一部原创数学专著。
Fuzzy Sets and Operations Research for DecisionSupport is a congratulatory volume of Key Selected Papers byHans-Jurgen Zimmermann on the occasion of Professor Zimmermann'sretirement. This edited-volume is designed as a naturalcontinuation of the previous two dedicated volumes OperationsResearch (edited by B. Werners and R. Gabriel, Springer, 1994 toHansJiirgen Zimmermann for his 60th birthday) and Fuzzy LogicFoundations and Industrial Applications (edited by D. Ruan,KluwerAcademic, 1996 to Hans-Jurgen Zimmermann for 25 years ofcontribution to fuzzy logic theory and applications).The previoustwo volumes, captured the essence of Professor Zimmermann'senormous contributions to each of these areas,have proved to begreat utility to anyone interested in Operations Research, FuzzySets, and related applications.
为适应目前数学教育改革趋势,我们特组织一批骨 对师范生必修课程《初等代数研究》进行教材方面的改革。《初等代数研究》包括:数系、式、函数、方程、不等式、数列、组合数学初步、概率论、数理统计和数学建模十个部分。 本书依据 课程标准(高中和义务教育阶段)中对数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大数学核心素养的考查要求,设置相应板块,旨在整合学生的知识体系,加强大学数学与中学数学知识的联系,将二者充分融合。 本书可作为全日制高等师范院校培养本科生、研究生的教材或参考书,也可以作为数学教师、数学爱好者的参考书。
《高等数学教材丛书:线性代数》主要特点是采用分层教学理念编写,一方面,简明直接地阐述基本内容,让大多数非数学专业的学生掌握基础的数学知识;另一方面,为保证大学教育的公正性,书中带*号内容,提供给学有余力,愿意深入学习的学生,我们希望通过精讲精练的方式,把高等数学更明白地展现给普通人,展现给未来需要数学工具和方法的人,而不只是数学工作者。
《线性代数》主要特点如下: ·理论与实际应用有机结合,大量的实际应用贯穿于理论讲解的始终,体现了线性代数在各个领域中的广泛应用。 ·习题安排科学合理,每一节的后面给出简单易算的习题,各章后面还有总习题,使学生有更多的演练机会,达到触类旁通的效果。 ·紧密结合数学软件Matlab,后一章介绍了目前国际公认的*秀的工程应用开发软件——Matlab的基本用法及与线性代数相关的基本命令。 ·数学名家介绍,每章后都介绍了一位数学名家的趣事,以增强读者的学习兴趣. 本教材由强静仁主编,参加编写的人员有强静仁、陈芬、孟晓华、吴小霞和许芳,在教材的编写过程中得到了许多同行的支持和帮助,在此表示感谢。 根据“培养综合素质高,知识结构合理,实践能力强的应用型人才”的基本原则,和授课学时少的教学
本书是高等农林院校理科基础课程教学指导委员会组织编写的理科基础课程示范教材,根据高等农林院校理科基础课程教学指导委员会制定的《普通高等学校农林类专业数理化基础课程教学基本要求》编写而成。 在编写过程中,既注重线性代数课程本身结构的科学性、系统性、严谨性,又深入浅出、通俗易懂,同时突出有关理论、方法的应用。在例题与习题的选择上注重典型性和代表性,旨在提高学生的计算和解决实际问题的能力。书中还附有相关数学家简介及用Matlab软件解决线性代数问题等内容。与本教材配套的还有学习指导和电子教案。 全书内容包括行列式、矩阵、向量组的线性相关性、线性方程组、相似矩阵与二次型。
《教材·教辅·考研宝典:新编线性代数》是按照*制定的《线性代数课程教学基本要求》和《全国硕士研究生入学统一考试数学考试大纲》编写的线性代数教学及学习用书, 除开启篇外,本书主要内容包括六章:方阵的行列式、矩阵、n元向量、线性方程组、特征值与特征向量、实二次型。 《教材·教辅·考研宝典:新编线性代数》内容与国内各高校大多数专业的线性代数教学要求基本一致,因而可作为通用型线性代数教材使用.本书例题、习题、方法丰富,因而也可作为线性代数教辅使用。 《教材·教辅·考研宝典:新编线性代数》特别适于帮助参加硕士研究生入学考试的学生系统复习、总结线性代数的基本概念、基本理论和基本方法,真正提高线性代数学习水平, 本书内容充实,知识系统,有一定的深度和广度,因而也可供高校师生和科技