《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
本书是代数组合的入门教材,主要内容包括图中的游动、Randon变换、偏序集的Sperner性质、杨图、杨表、矩阵树定理、有向树、定向树以及组合数学中的一些“珍宝”。作者将代数学中一些简单和基本的工具巧妙地应用到组合数学中,每章论述一个经典且有趣的课题,章末简要阐明了所述问题产生的历史背景、相关故事以及现有的应用领域。最后精选的练习指出了相关问题进一步的发展方向。
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
为适应目前数学教育改革趋势,我们特组织一批骨 对师范生必修课程《初等代数研究》进行教材方面的改革。《初等代数研究》包括:数系、式、函数、方程、不等式、数列、组合数学初步、概率论、数理统计和数学建模十个部分。 本书依据 课程标准(高中和义务教育阶段)中对数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大数学核心素养的考查要求,设置相应板块,旨在整合学生的知识体系,加强大学数学与中学数学知识的联系,将二者充分融合。 本书可作为全日制高等师范院校培养本科生、研究生的教材或参考书,也可以作为数学教师、数学爱好者的参考书。
线性代数是理工类专业的一门重要基础课,也是硕士研究生入学考试的重点科目。同济大学数学系主编的《线性代数》是一套深受读者欢迎并多次获奖的优秀教材。为帮助读者学好线性代数,我们编写了《线性代数同步辅导》,该书与同济大学数学系主编的《线性代数》(第五版)完全配套,它汇集了编者几十年的丰富经验,将一些典型例题及解题方法与技巧融入书中,本书将会成为读者学习《线性代数》的良师益友。 该书章节的划分和内容设置与同济大学的《线性代数》(第六版)完全一致。本书由张天德、苗丽安主编,刘庆红、刘清华副主编。
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为“论小于一个给定值的素数的个数”。在这篇论文的中间部分,黎曼作了一个附带的备注——一个猜测,一个假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立? 已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。 在《素数之恋》中
本书是按照国家*对经济、管理类大学本科线性代数考试大纲编写的,并充分考虑独立学院学生的特点,力求以通俗的语言向读者介绍线性代数基础的知识。 全书共分5章。第1章内容以行列式为中心,介绍了行列式的概念、性质及计算,以及用克菜姆法则求解线性方程组的方法;第2章介绍了矩阵这一重要的工具,讨论了矩阵的运算及初等变换;第3章以矩阵和向量为工具,进一步讨论了线性方程组的解法和解的结构;第4章通过对矩阵的特征值和特征向量的讨论,研究了矩阵的对角化问题;第5章讨论实二次型标准化及正定性问题。
本教材是在多年教学实践的基础上、参照*关于全国非数学专业(经济管理类)硕士研究生考试数学(三)对线性代数部分的基本要求编写的,可作为高等学校经济管理类各专业学生的线性代数教材。全书共分5章,章介绍了行列式的概念、性质以及行列式的计算方法;第二章介绍了矩阵这一重要工具,讨论了矩阵的运算、矩阵的初等变换和矩阵的秩;第三章以矩阵为工具,讨论了线性方程组的解法和线性方程组解的结构;第四章介绍了矩阵的特征值和特征向量,并以矩阵的特征值和特征向量为工具研究了矩阵的对角化问题;第五章介绍了二次型概念、二次型化标准型和判断二次型为正定的方法。在内容的编写上,我们力求通俗易懂地介绍线性代数的基本理论和方法,用简单而有代表性的例题,使学生通过本教材的学习对线性代数的理论及方法有一个清楚的了解。针对线性
数作为产生自然数的原本形式,它已有上万年的历史。虽然有史以来,人们就已应用敷数这一计数方法,但在数学研究领域却完全忽略了“数计数”这种基本的数学形式,使之成为数学研究中的一项空白。在本书讨论的整个过程中,根据数这种原本形式表现出的性质与规律,创造出了“薛海明筛法”,从根本上改变了“古典筛法”以及现代数论中应用的一些新的筛法理论工具,并对素数的判别,合数的分解,求素数的分布个数,孪生素数的分布,哥德巴赫猜想等有关素数难题全部归纳为系列化讨论。它将系统地告诉我们,商数、余数、合数、素数、偶数、各种因子等多种不同形式的有序分布规律与各数之间的关系。这种全部运用系列化探讨自然数的方法,对数学的发展有着深远的意义,也是开启对敷数性质,规律研究的一部原创数学专著。
本书为《线性代数》(田原、沈亦一主编,东华大学出版社)的配套教学辅导用书,包含了配套教材中各章习题的详细解答。全书共七章,内容包括行列式、矩阵、向量组的线性相关性、线性方程组、矩阵的相似对角化、二次型、线性空间和线性变换。每章分为七个部分:基本要求、内容提要、重点难点、常见错误、典型例题、习题详解和补充习题(附解答和提示)。 本书内容详实,叙述精练,概括了各章的知识点,明确了教学要求,指出了重点、难点以及学习过程中常见的错误,拓宽了例题和习题的尝试和广度。本书可供高等工科院校师生使用,也可供考研的学生参考。
Thisvolumeisacompletelynewversionofthebookunderthesametitle,whichappearedin1981asVolume9intheseries"ProgressinMathematics,"andwhichhasbeenoutofprintforsometime.Thatbookhaditsorigininnotes(takenbyHassanAzad)fromacourseonthetheoryofLinearalgebraicgroups,givenattheUniversityofNotreDameinthefallof1978.Theaimofthebookwastopresentthetheoryoflinearalgebraicgroupsoveranalgebraicallyclosedfield,includingthebasicresultsonreductivegroups.Adistinguishingfeaturewasaself-containedtreatmentoftheprerequisitesfromalgebraicgeometryandcommutativealgebra.
本书是以*工科类、经济管理类本科教学基础课程教学基本要求为依据编写的通用教材。 本书内容分为:行列式、矩阵及其初等变换与解线性方程组、矩阵的运算、向量的线性相关性与线性方程组的解的结构、特征值与特征向量、二次型、线性空间与线性变换等七章。各章均配有一定数量的习题,书末附有习题参考答案。 根据多年的教学经验,本书将矩阵的初等变换这一简单实用且强有力的工具贯穿使用于全书,既便于教又便于学,是本书的一个特色。 本书可作为高等院校理工、经管各类专业的线性代数课程的试用教材或教学参考书。