本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
本书分上、下两册出版。 莫宗坚、蓝以中、赵春来编著的《代数学(上第2 版)/现代数学基础》主要讲述近代代数的初步知识, 内容包括集合论与数论、群论、 多项式论、线性代数以及域论。 本书内容丰富,直观性强,推理自然,解释详尽 。此书的独到之处是 特别注重对于代数学的背景、基本思想以及与其他学 科的联系等方面的 介绍。书中精选了大量的例题和习题。本书的起点低 ,由浅入深。具有 高等代数基础知识的读者皆可以阅读本书,进而学到 现代代数学的较大部 分基础知识。 本书可作为高等学校数学系 高年级学生以及研究 生的教材,也可供 数学工作者参考。
本教材是高等学校经济类相关专业数学基础课 线性代数 课程的教材。全书共分六章。主要内容包括行列式、矩阵、线性方程组、向量空间、矩阵的特征值与特征向量及二次型。本书按章配置适量习题,书末附有习题答案与提示,供教师和学生参考。教材的阐述兼顾线性代数的科学性和深入浅出。在例题的选配和讲解上,达到题型多样,难度深浅适当。习题的配备上分为基础题型和综合题型,既照顾到基础,又增加了部分习题的难度,给学有余力的学生更多的提升空间。本教材在讲授知识的同时,注重培养学生数学的思维方式和运用数学知识解决经济问题的能力。本教材适合高等学校非数学专业的线性代数课程教材或教学参考书。
本书的主要目的是为那些学习组合学现有技巧的人们提供帮助。学习这些技巧的*有效的方式是去求解练习和问题,这本书以问题和系列问题的形式呈现了所有的内容(除了每章节开始的一些一般注解外)。在第二部分,给出了每个练习的提示,其中包含了解答所需的主要想法,但是允许读者通过完成证明来练习这些技巧。在第三部分,给出了每个问题的完整解答。 本书对那些打算研究图论、组合学或者它们应用的学生,以及那些认为组合技巧能够对他们在数学其他分支、计算机科学、管理科学、电子工程等领域的工作有所帮助的研究者们,都将很有用处。读者只需要有线性代数、群论、概率论和微积分的背景知识就可以了。
本书是\\\"小学数学教师·新探索\\\"系列中的一本,聚焦小学生早期代数的学习与诊断,以小学数学课程中的7个典型教学内容(分别是几何图形的模式概括、加法运算中的数值推理、乘法分配律的学习进阶、线性模型解文字题、解方程的教学干预、等号的理解、分数情境中是数学抽象)为切口,通过课堂观察、结构化访谈、视频分析、数据对比等方式,重点考察学生在代数学习中如何建构数学关系、模式和算术结构,同时密切关注其推理过程,从而探索在低年级阶段渗透早期代数思维的可行路径。 本书对 外涉及早期代数的相关研究作了比较系统的梳理,具有一定的
《代数等式证题法》以全国统编中学教学大纲为基础,深入细致地讨论了代数等式证明的方法与技巧,归纳出按图索骥、量体裁衣、殊途同归等七种有效的方法,并对每一种方法都做了举例说明。《代数等式证题法》适用于中学生、知识青年自学,也可供中学数学教师参阅。
《当代科学技术基础理论与前沿问题研究丛书·中国科学技术大学学校友文库:无理数引论》自从1978年R.Apery证明了(3)的无理性以来,函数在奇数上的值的无理性研究一直是引人注目的数论课题.本书给出与此有关的一些基本结果(如(3)的无理性的Apery原证和Beukers的证明等)以及近些年来T.Rivoal和V.V.Zudilin等人的新进展(如(2k1)(k≥1)中有无穷多个无理数;(5),(7),(9),(11)中至少有一个无理数;等等);此外,还给出无理数理论的一些经典结果和方法,如无理数的意义和分类、无理性的刻画及度量、无理数的有理逼近和连分数展开、数的无理性证明的初等方法、无理数的构造、无理数的正规性等;特别着重于数的无理性的判别法则和一些特殊类型的无理数(如Erdos的无理性级数、Mahler小数、Champernowne数、Fibonacii数、Lucas数及Fermat数的倒数的级数等)
本书分为上、下两册。上册讲述多项式、线性方程组、矩阵和行列式等代数理论,进而抽象出线性空间理论;下册讲述线性变换、Jordan标准形、内积空间和双线性函数和二次型等几何理论。本书在多项式部分强调类比的方法,在线性代数的代数部分强调初等交换的核心地位以及化一般为特殊的解决问题的基本方法,在线性代数的几何部分强调几何和代数的对应与联系。全书线索清晰,证明过程翔实,力求重现数学再发现过程,低起点而高落点,并对部分知识点进行拓展,每一章节后配有丰富的习题,以便学生巩固概念和开拓思路。 本书可作为普通高等学校数学类线性代数课程或者高等代数课程的教材,也可作为其他相关专业参考用书。