《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
本书主要涉及初等数论的相关知识,共选编了62道较经典的初等数论题目和它们的解答,并在后面列出了所需要的定义和定理。通过这些题目和解答,能增强读者解决数学问题的能力。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
本书是第二版,较版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。本书是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和*理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
本书内容贯彻了“教材全解系列”讲解细致、层次清晰、深入浅出的特点,并在此基础上突出了三大亮点: 1.过程步骤详,方法技巧全。 对于课后题和本书选编的例题,本书都给出了详尽的解题步骤,有的习题还给出多种解法,方便读者比较各种解题方法,掌握多种解题技巧。 2.关键步骤加批注,讲解更到位。 “本章课后习题全解”部分根据题目的难度和重要性,将习题分三个等级,并在题号前标示出“易”、“中”、“难”。此部分不但解答步骤详尽,并且关键步骤都加了注解,方便读者更加高效地学习。 3.密切联系考研,精选并详解考研真题。 在“常考基本题型”、“本章综合拔高题型精讲”栏目里,精选了近年考研经典题目,详细阐述解题方法和技巧,部分例题给出了两种及两种以上的解法,让读者了解本章节知识点在考研中的考查
随着计算机技术的飞速发展和广泛应用,许多实际问题得以通过离散化的数值计算而得到定量的解决。而线性代数正是实际问题离散化的数学基础.不仅如此,线性代数在训练学生的逻辑思维和推理能力、分析和解决实际问题的能力方面也起着重要的作用。因此,线性代数已成为理工、经济、工商管理等各专业大学生必修的重要数学基础课之一。 由于历史原因,我国线性代数的教学内容与课程体系受前苏联的影响很深。我国20世纪五六十年代的线性代数教材往往是高等代数教材的缩写本,理论性很强,难度较大,不太适合普通高校工科专业使用。 20世纪80年代初,同济大学编写了供普通高校工科专业使用的《线性代数》。该教材较好地把握了工科线性代数课程教学的基本要求,内容选择适当,难度适中,论述通俗易懂,例题与习题较为典型,一经出版
本书按照工科及经济管理类 本科数学基础课程教学基本要求 ,并结合当前大多数本专科院校的学生基础和教学特点进行编写的。全书以通俗易懂的语言,全面而系统地讲解线性代数的基本知识,包括行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换等七章内容。每章分若干节,每章配有习题,书末附有习题的参考答案。本书适合作为普通高等院校工科类、理科类(非数学专业)、经济管理类有关专业的线性代数课程的教材使用。
本书是根据邮电高等函授《工程数学》教学大纲对《线性代数》的要求,结合函授教学实践编写的适合学生自学的《线性代数》教学用书,也可作为电大、函大、夜大工科学生的《线性代数》教材或参考用书。 为了突出便于自学的特点,我们在编写中力求做到: 1.文字简洁流畅,重点突出,对难点分层次讲深讲透。对某些较难的定理证明或例题(用*号表示)可作为选学内容。 2.对典型例题,都在解题前作了思路分析,以利读者举一反三。 3.每节后都配有一定数量的思考题和习题,要求读者认真、独立完成,以加强对基本概念的理解和进行必要的基本训练。 4.每章后都有较详尽的内容小结,并配有一定数量的复习题,以帮助读者对本章所学内容总结、提高并融会贯通。 5.本书中有“*”号的章节和习题;专科生可选学,有“**”号的第六章本科生可
本书密切结合经济工作的需要,充分注意逻辑思维的规律,根据大学专科培养应用型人才的要求,删去次要内容,突出重点,说理透彻,本着“打好基础,够用为度”的原则,着重讲解线性代数的基本概念、基本理论及基本方法,培养学生熟练运算与解决实际问题的能力。在质量上坚持高标准,实现零差错。
本书是在已有的线性代数教科书的基础上,结合作者多年的教学实践和经验,认真调查国内外数学教育的改革动态,力求化枯燥为生动,化繁琐为简洁,这样既保持了线性代数逻辑性强的特点,又增加了理论和实际相结合的实例,使学生的数学能力及应用能力得到了培养和提高。 线性代数作为一门数学基础课,其本身理论性强,计算繁杂,知识枯燥而抽象.为使学生在学习过程中易学好懂,我们在内容编排上,作了部分调整,全书共分为五章,行列式、矩阵、向量组及其线性相关性、线性方程组、相似矩阵与二次型,其中行列式的定义采用Laplace展开递推来定义,矩阵的秩与矩阵的初等变换调整到第二章,这样可使线性代数的几个主要内容:行列式、矩阵、向量组、线性方程组更加清晰突出。课后习题分为A、B两类,以方便教师和学生根据自身要求进行取舍
本书是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照工科类及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校在教学改革中出现的新的形势和特点而编写的。全书以通俗易懂的语言,系统地讲解行列式、矩阵、线性方程组、相似矩阵及二次型、线性空间等内容。全书每章分若干节,每节都配有习题,同时每章还配有复习题,书末附有习题的参考答案。重要的章节还附有实际应用题,附录有数学模型举例等。 本书结构严谨、理论系统、举例丰富、实用性强。可作为普通高等院校(尤其是少学时院校)工科类、理科类(非数学专业)、经济管理类各专业线性代数课程的教材,也可供有专升本的专科院校或成教学院选用,还可供相关专业人员和广大自学者学习和参考。
本书根据《工科类本科数学基础课程教学基本要求》及考研大纲编写而成,是多年教学改革与实践的经验总结.本书主要内容包括行列式、矩阵、元维向量组、线性方程组、特征值与特征向量、空间解析几何、二次型、线性代数问题的Maflab求解等知识.每章内容循序渐进,既考虑到高等院校一般工科学生使用,又根据考研的实际情况,设置了知识结构图、基本要求、内容提要、典型题解析、自测题及自测题解答等环节,不仅适合于普通高等院校理工类、经管类本科各专业的学生使用,还可以作为教学参考用书或考研辅导用书。
“线性代数”是普通高等院校普遍开设的一门重要数学基础课,本书根据*高等学校“线性代数教学基本要求”编写而成,涵盖了行列式、矩阵、线性方程组、相似矩阵、二次型、线性空间与线性变换等内容,同时编入了相应的数学实验。本书的编写服务于大众化高等教育的需要,符合包括独立学院在内的大多数普通高等院校的办学定位和人才培养目标,着力体现*[2007]1号文件和2号文件关于教材建设“分类指导、注重特色”的要求,在考虑课程自身的系统性和科学性的基础上,突出其应用性。内容安排由浅入深,先直观、后抽象,注重基本概念、基本方法和基本运算,淡化较难的证明及烦琐的计算,加强实际运用,紧密与计算机相结合,适当引入数学实验。书中基本概念的引入,力求直观,尽量减少其抽象性,如将线性相关性融入线性方程组中,以分散其难点,让学
本书涵盖非数学专业线性代数教学的所有基本内容,但在内容的安排、写法上做了较大改进。全书共四章:线性方程组与矩阵;向量组的线性相关性与线性方程组解的结构;行列式;方阵的对角化。应用举例很多,每章后有Matlab简单使用的介绍。
本书编者依据线性代数的学科特征,并融入自己多年来的教学经验,详解教材每一章的学习目的和要求,使学生在学习时心中有数,有的放矢。此外,还包括疑难解惑,使学生对学习中遇到的难点能迎刃而解,便于掌握线性代数的实质;例题解析,其中有介绍基本概念和基本运算方法的计算题和证明题,有一题多解的开拓思路题,也有较灵活的综合题。
本书介绍离散数学的基本知识,包括数理逻辑、集合论、抽象代数、格和布尔代数,以及图论等。本书的特点并不苛求从数学的逻辑性和严密性上去论述所涉及的数学理论知识,而是注重于这些数学知识对于计算机科学诸领域中所起的应用作用。也就是说,注重于如何通过有关的数学理论、方法和技术去解决计算机科学中的实际应用问题。为此,本书力求做到理论的叙述与例题演算的有机结合,而且书中大量的例题都来自于计算机科学各领域中的实际问题,能使读者有真实感,同时,读者可以从这些例题中领悟到数学与计算机科学之间的密切关系。本书的酝酿构思、撰写工作历时近10年,可以说它是编者多年从事计算机科学教学和科研的一个经验汇报,是给读者的一份奉献。 本书适合于高等院校计算机专业的本科生、研究生用作教材,同时也可供从事计算机应用
《线性代数》主要特点如下: ·理论与实际应用有机结合,大量的实际应用贯穿于理论讲解的始终,体现了线性代数在各个领域中的广泛应用。 ·习题安排科学合理,每一节的后面给出简单易算的习题,各章后面还有总习题,使学生有更多的演练机会,达到触类旁通的效果。 ·紧密结合数学软件Matlab,后一章介绍了目前国际公认的*秀的工程应用开发软件——Matlab的基本用法及与线性代数相关的基本命令。 ·数学名家介绍,每章后都介绍了一位数学名家的趣事,以增强读者的学习兴趣. 本教材由强静仁主编,参加编写的人员有强静仁、陈芬、孟晓华、吴小霞和许芳,在教材的编写过程中得到了许多同行的支持和帮助,在此表示感谢。 根据“培养综合素质高,知识结构合理,实践能力强的应用型人才”的基本原则,和授课学时少的教学