数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
本书主要涉及初等数论的相关知识,共选编了62道较经典的初等数论题目和它们的解答,并在后面列出了所需要的定义和定理。通过这些题目和解答,能增强读者解决数学问题的能力。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
本书是第二版,较版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。本书是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和*理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
Fuzzy Sets and Operations Research for DecisionSupport is a congratulatory volume of Key Selected Papers byHans-Jurgen Zimmermann on the occasion of Professor Zimmermann'sretirement. This edited-volume is designed as a naturalcontinuation of the previous two dedicated volumes OperationsResearch (edited by B. Werners and R. Gabriel, Springer, 1994 toHansJiirgen Zimmermann for his 60th birthday) and Fuzzy LogicFoundations and Industrial Applications (edited by D. Ruan,KluwerAcademic, 1996 to Hans-Jurgen Zimmermann for 25 years ofcontribution to fuzzy logic theory and applications).The previoustwo volumes, captured the essence of Professor Zimmermann'senormous contributions to each of these areas,have proved to begreat utility to anyone interested in Operations Research, FuzzySets, and related applications.
本书是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照工科类及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校在教学改革中出现的新的形势和特点而编写的。全书以通俗易懂的语言,系统地讲解行列式、矩阵、线性方程组、相似矩阵及二次型、线性空间等内容。全书每章分若干节,每节都配有习题,同时每章还配有复习题,书末附有习题的参考答案。重要的章节还附有实际应用题,附录有数学模型举例等。 本书结构严谨、理论系统、举例丰富、实用性强。可作为普通高等院校(尤其是少学时院校)工科类、理科类(非数学专业)、经济管理类各专业线性代数课程的教材,也可供有专升本的专科院校或成教学院选用,还可供相关专业人员和广大自学者学习和参考。
本书是《面向21世纪高职高专规划教材——线性代数》配套的学习辅导书,在讲解各章教学要求、学习难点、重点和脉络的基础上,以问答的形式解释了许多疑难问题,讲解了一些典型例题,并给出了教材全部习题的详细解答和相应的解题技巧分析。 本书适合作为高职高专“线性代数”课程的辅导书和参考书,也可供相关学生及教师参考。
本书为高职高专线性代数的创新教材,遵照“必需与够用”的原则,意在培养学生的数学思想与用数学原理和方法解决实际问题的能力。 全书注重数学的基本概念与基本解题方法,增加了数学软件Matlab的实际应用。本书不仅包含线性代数课程的基本内容:行列式,矩阵,向量,线性方程组等,还介绍了数值科学计算软件Matlab的初步应用。教材内容简明直观,理论严谨,逻辑清晰,便于教学与自学。 本书适合高等专科学校、高等职业技术学校、成人高等学校、本科院校的二级职业技术学院各专业使用,亦可供专升本人员及相关工程技术人员参考。
“线性代数”是普通高等院校普遍开设的一门重要数学基础课,本书根据*高等学校“线性代数教学基本要求”编写而成,涵盖了行列式、矩阵、线性方程组、相似矩阵、二次型、线性空间与线性变换等内容,同时编入了相应的数学实验。本书的编写服务于大众化高等教育的需要,符合包括独立学院在内的大多数普通高等院校的办学定位和人才培养目标,着力体现*[2007]1号文件和2号文件关于教材建设“分类指导、注重特色”的要求,在考虑课程自身的系统性和科学性的基础上,突出其应用性。内容安排由浅入深,先直观、后抽象,注重基本概念、基本方法和基本运算,淡化较难的证明及烦琐的计算,加强实际运用,紧密与计算机相结合,适当引入数学实验。书中基本概念的引入,力求直观,尽量减少其抽象性,如将线性相关性融入线性方程组中,以分散其难点,让学
对称是客观世界中相当普遍的现象,而群是现代数学中一个抽象的概念,但它们却有密切的联系。《对称与群》从读者比较熟悉的平面图形的对称入手,逐步提炼、归纳,总结出对称的本质;然后辅以置换群和多项式的对称群等内容,巩固得到的理性认识;*后简单介绍抽象群的概念和例子,以及群的若干应用。《对称与群》不过多地追求知识的系统性和严格性而特别注意对称和群中本质的内容和主要的线索,注重阐述其中的数学思想。
本书根据《工科类本科数学基础课程教学基本要求》及考研大纲编写而成,是多年教学改革与实践的经验总结.本书主要内容包括行列式、矩阵、元维向量组、线性方程组、特征值与特征向量、空间解析几何、二次型、线性代数问题的Maflab求解等知识.每章内容循序渐进,既考虑到高等院校一般工科学生使用,又根据考研的实际情况,设置了知识结构图、基本要求、内容提要、典型题解析、自测题及自测题解答等环节,不仅适合于普通高等院校理工类、经管类本科各专业的学生使用,还可以作为教学参考用书或考研辅导用书。
本书编者依据线性代数的学科特征,并融入自己多年来的教学经验,详解教材每一章的学习目的和要求,使学生在学习时心中有数,有的放矢。此外,还包括疑难解惑,使学生对学习中遇到的难点能迎刃而解,便于掌握线性代数的实质;例题解析,其中有介绍基本概念和基本运算方法的计算题和证明题,有一题多解的开拓思路题,也有较灵活的综合题。
本书是同济大学数学系编《线性代数》的第五版,依据工科类本科线性代数课程教学基本要求(以下简称教学基本要求)修订而成。此次修订参照近年来线性代数课程及教材建设的经验和成果,对原有内容作了全面的审视与修改,修订的主导思想是:在满足教学基本要求的前提下,适当降低理论推导的要求,注重解决问题的矩阵方法。为此,对书中某些理论的证明改为小字排印,并调整了部分例题与习题。 本书内容分为:行列式、矩阵及其运算、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换等六章,各章均配有一定数量的习题,书末附有习题答案。其中一至五章(除用小字排印的内容外)符合教学基本要求,教学时数约34学时。一至五章中用小字排印的内容供读者选读,第六章较多地带有理科的色彩,供对数学要
本书是与同济大学数学系编《线性代数》第五版配套的学习辅导书,主要面向使用该教材的读者。本书编者之一是《线性代数》第五版的编者,另一位编者在同济大学多年执教线性代数课程。 本书是在《线性代数》第四版辅导书的基础上修订而成的,修订时对原书中要求偏高的内容作了较大幅度的删节或改写,使它更贴近“工科类本科数学基础课程教学基本要求”。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)等七个栏目。其中“释疑解难”显示出编者对课程内容的深刻理解和长期积累的丰富经验;“例题剖析与增补”充分开发出例题的内涵,并有助于读者掌握举一反三的学习方法;“习题解答”注重阐明解题的思想和方法,并作出规范解答。本书相对于教材有一
《线性代数》主要内容分为:行列式、矩阵、线性方程组、矩阵的特征值与特征向量、二次型共5章,在主要概念上力求自然引人,其中矩阵作为一个重要的研究对象和研究工具一直贯穿全书.本书选编的教学例题和习题题型比较丰富,习题量适度,并且选用了一些实际应用的例子,在学习难度上注重循序渐进性,各节均配有一定数量的习题,章末还配有总习题,其中有些选自研究生入学考试的试题,书末附有习题答案,供大家参考. 《线性代数》加强基础、重点突出,可作为高等院校非数学专业学生的线性代数教材,也可用作自学用书.