《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
这是《不等式的秘密》一书的第二卷,取名为《不等式的秘密(第2卷高级不等式)》。在本卷你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明。 在此,你可以找到证明不等式的现代方法:整合变量法、乎方分析法、反证法、归纳法和经典不等式的使用方法。正如你阅读过的本书卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能。 我们希望,作者范建熊倾注在本书关于不等式方面的热情和汗水对你有用。
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
莫宗坚、蓝以中、赵春来编著的《代数学(下修 订版)/现代数学基础》为《代数学》下册,主要讲述 交换代数的基本知识,内容包括环论、赋值论、 Dedekind整环及同调代数。这些都是交换代数的精华 内容,是学习代数几何、代数数论等现代数学的 基础。 本书内容丰富,直观性强,推理自然,解释详尽 。本书的独到之处是特别注重对于交换代数的背景以 及与其他学科的联系的介绍。书中精选了大量的例题 与习题。 本书可作为高等学校数学专业研究生教材,也可 供数学工作者参考。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
抽象代数I是南开大学数学专业的必修课,抽象代数II是该专业本科生的选修课和研究生的必修课,结合代数是应用非常广泛的一种代数结构,将这些内容作为该课程的内容是非常合适的。本书是作者在长期教授该课程的基础上编写而成,内容包括结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示,某些非结合代数。 本书力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一著名论述,更能体会到“玄之又玄,众妙之门”这样的哲理。
内容简介本书为《高等代数》(丘维声著,科学出版社2013年3月出版)配套的习题解答与提示,汇集了该书的全部习题,计算题给出了答案,证明题给出了关键性的提示,并且对于相当一部分习题给出了详解,这些解法都很有特色,是高等代数课程的组成部分.
该书稿是《线性代数(经管类?第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
《伽罗瓦理论--天才的激情/现代数学基础》编著者章璞。 《伽罗瓦理论--天才的激情/现代数学基础》内容提要:这是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,本书强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和□的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。 本书可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
《初中数学千题解》是“浙江思美数学”团队为初中学生与数学教师量身打造的精品丛书。本分册由代数综合100题和圆100题及其解析组成。前者包括数与式、方程与不等式、函数与代数综合以及数论等内容;后者包括圆与折叠、圆与相似、圆中的动点问题、隐形圆问题、圆幂定理相关拓展、圆的综合等内容。书中题目都有详解,并设“思路点拨”栏目,使学生不仅知其然, 知其所以然。 书中题目精选自全国各地知名中学的经典考题,具有很高的实战价值,同时兼顾重点高中的自主招生考试,个别习题难度较大,适合尖子生研习。
《离散数学及算法(第2版)/高等院校软件工程专业规划教材》主要介绍离散数学的基本理论及算法实现,分为两篇。篇介绍计算机科学中广泛应用的离散结构基本概念和基本原理,包括以下内容:数理逻辑、集合论、二元关系、函数、代数系统和图论。第二篇给出了与篇各章内容密切相关的算法和程序,使理论在计算机上得到具体实现。附录部分给出了近年来考研试题的分析和离散数学名词中英文对照表。 《离散数学及算法(第2版)/高等院校软件工程专业规划教材》叙述通俗易懂,可以作为高等院校计算机及相关专业离散数学课程的本科生教材和教学参考书,也可供计算机科学工作者和科技人员阅读与参考。
本书是基于作者多年来在北京大学讲授"组合数学" 课程的讲义补充、修改而成的, 内容包括组合计数、存在性结果、图论基础、集合相交理论、组合设计、组合的代数和概率方法等. 本书注重对基本概念、基本理论和基本方法的理解和掌握, 强调组合思想及组合数学在各个领域的应用. 全书分为十章, **章给出了本书用到的一些基本概念以及初等计数方法; 第二章至第五章给出几种组合计数的方法, 如递推关系、生成函数、容斥原理、Polya 计数定理等, 以及几个重要的组合数, 如Catalan 数、Stirling 数、分拆数等; 第六章给出鸽笼原理以及它的推广—— Ramsey 理论和相异代表系等存在性结果; 第七章介绍了图论的基础知识; 第八章介绍了初步的集合相交理论; 第九章详细介绍了组合设计理论; 第十章简要介绍了组合数学的概率方法. 书中每章之后都配有丰富的习题, 书末
本书是编者充分考虑了经管类专业对线性代数课程的需求,并结合自身多年教学经验编写而成的。全书共6章,内容包括行列式、矩阵、线性方程组、矩阵的特征值、二次型和数学实验。其中,第1~5章为教学基本内容,第6章可根据实际需要选用。
本书是依据国家*审定的本科“线性代数课程教学的基本要求”编写的大学本科应用型教材.全书共分5章,其内容包括矩阵与行列式、矩阵的初等变换与线性方程组、向量组的线性相关性、矩阵的相似对角化、二次型等。 本书的编写力求引进概念自然浅显,定理证明简明易懂,例题选取典型适当,应用实例背景广泛,难点分散,便于教学,充分体现“具体—抽象—具体”的辩证思维过程.每章各节配有两个层次的适量习题,各章后设计了两套自测题,书末附有习题答案。 本书内容符合当前科技发展的需要,可作为培养应用型人才的高等院校工程类、经济管理类等专业的教材,也可作为科技工作者或其他在职人员的自学用书。
本书主要介绍集合论、代数系统、图论、数理逻辑等内容。主要特点有:(1)内容组织上层次分明,结构清晰。(2)叙述严谨,重点突出,深入浅出,便于自学。(3)对部分定理只给出了直观解释,没有给出证明,主要是为了重点突出,避免舍本逐末。(4)书中各章配有大量的例题与习题,旨在培养、提高学生运用基础理论来分析问题、解决问题的能力。对绝大部分习题均给出了答案。(5)书后附有客观题,并给出了答案,供学生自己检测。本书是编者在长期从事离散数学教学工作的基础上编写而成的,主要适用于应用数学专业的本科生,同时也适用于计算机科学与工程及其它相关专业和层次的学生。
《高等代数选讲》较全面、系统地总结和归纳了高等代数中的重要知识点以及典型问题的解题方法和技巧。全书共10章:多项式、行列式、线性方程组、矩阵、方阵的特征根与相似对角化、λ-矩阵与若尔当标准形、二次型、向量空间、线性变换、欧氏空间。 本书十分注重解题方法的归纳和总结,每章各节在简要介绍基础知识的基础上,针对该节中涉及的常见问题,系统地总结了常用的解题思想和方法,并结合典型例题(以考研试题为主)揭示每一种方法的应用技巧和应注意的问题。 《高等代数选讲》可作为数学专业高等代数选讲课程的教材,也可供数学专业学生考研学习使用,还可作为理科、工科学生学习高等代数与线性代数课程的参考书。
该书编选了行列式、线性方程组、矩阵和二次型、向量空间及其线性变换、群、环、域、模、仿射空间等方面。书中含1938道习题并附有解答,数量多,内容丰富,由浅入深,部分题目难度大。不少题目是名家提供的,有些题目立意新颖,结构色质较为合理,证明题较多,题多难度大,涉及的知识点较多,需要读者多花费心思琢磨,但可以开阔学习者的视野,提升综合思考能力。本书知识点较多且比较难,可供高等院校设置线性代数课程的专业的师生教学时参考。