变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为三大部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际问题,提出了在建立数学横型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范。而且配备了大量的习题。 本书适合作为高等院校相关课程的教材和参考书,也可供参加国内数学建横竞赛的人员参考。
本教材分上、下两册,本书为下册.内容包括数项级数、函数项级数与函数列、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数、含参变量的积分、重积分、曲线积分、曲面积分.本书在章节安排上,由浅入深,逐步展开,编排合理;注重对基础知识的讲述与基本能力的训练;结合微积分的发展史与几何意义引进相关的概念与定理,具有启发性;注重新概念、新定理以及精彩定理证明的评注;证明详细,难点处理透彻,例题丰富,便于教学和读者自学.
本书是在第一版基础上修订而成的,在保持了第一版的简明扼要、论述清晰的内容体系和风格基础上,大幅度增加了泛函分析在各个领域中应用的例子. 全书共 4 章,包括泛函分析基础、局部凸空间、算子理论与算子代数初步、Banach 空间的微分学与拓扑度. 书中列举了大量泛函分析在复 分析、优化理论、偏微分方程、最优控制等领域的应用实例. 本书尽力以 一个适当的基础知识为起点,在整体内容上留给教师授课更多的自主空间, 留给学生学习更多的思考空间. 书中每章都给出了相应的参考书目供读者阅读,并精心选配了大量习题作为练习和正文的补充.
《数值与非数值分析VC++类库》是?VC++和BC++数值分析类库?的增补版.?VC++和BC++数值分析类库?包括矩阵?向量的操作运算和数值分析各种算法,读者几乎可以随心所欲地操作处理矩阵和向量,功能比MATLAB更丰富;数值分析功能涵盖了该学科的各分支.《数值与非数值分析VC++类库》除增补了矩阵向量操作和数值分析功能外,还增加了6项功能:字符串数学表达式解析;数据结构(链表?堆栈?队列)模板;信号基本分析工具箱;大整数?分数?分数矩阵?向量运算;复数?复数矩阵?向量运算;网络图操作与优化.《数值与非数值分析VC++类库》提供了动态库和静态库,静态库使得用户能编译生成完全独立的应用程序.
本书是以实变函数与泛函分析课程内容为先导的介绍近代实分析的引论性著作。除必要的基础知识外,一些活跃的研究领域,如Calderon-Zygmund奇异积分算子,Hp空间的实变理论,算子的加权模不等式等,在书中都得到了充分反映。全书通过对实变量函数所构成的各种函数空间(如Lebesgue空间、连续函数空间、Hardy空间、BMO空间等)和它们之间的算子作用以及Fourier分析、算子与空间内插等重要方法的描述,对20世纪50年代以来逐步形成与发展的处理n维欧氏空间上各种分析问题的实变方法与技巧做了系统、深入、简明的介绍。本书内容丰富、近代、叙述严谨、简明,是实分析方面一本可读性很强的教科书与参考书。 本书前4章可供本科高年级学生选修,全书可作基础与应用数学、计算数学等许多方面的研究生的公共学位课教材,为从事调和分析、偏微分方程、非线性
中国科学院数学与系统科学研究院于2011年4月至2011年10月举办了题为“非线性偏微分方程中的分析”的主题研讨班。本书收集了其中8篇讲义,包括 Nicolas Burq教授等关于水波问题Cauchy理论的低正则性,Jean-Yves Chemin教授关于Navier-Stokes方程,以及Isabelle Gallagher教授关于海洋流的半经典分析的精彩内容等。这些内容在一定程度上反映了近年来在流体力学的相关数学理论方面的一些进展。本书可作为从事非线性偏微分方程、特别是流体力学方程和微局部分析研究的科研人员和教师的学习和参考用书。
陈志华编著的《近代分析基础(第2版)》是一本综合性的分析教材,全书分为五章:分别为一般拓扑、线性泛函分析、sobolev空间、线性算子的谱分析及非线性分析简介,其中每章均独立成篇而相互又有关联。 《近代分析基础(第2版)》主要读者对象为数学专业高年级学生与硕士研究生,同时也可供其他理工科高年级学生、研究生、青年教师及相关工程技术人员学习参考之用。本书的取材与编写都充分考虑使本书能适于自学,为有兴趣于此的读者提供一本适于自学的读本。
本书共分五章。 章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。 第二章建立拓扑度理论。不仅建立了重要的有限维空间连续映像的Brouwer度和Banach空间全连续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A—proper映像的广义拓扑度。 第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。 第四章主要证明强制半连续单调映像的满射性和强制多值极大单调映像的满射性。 第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minimax原理和山路引理等。 书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。 本书可作为综
本书汇集了 数学分析 方面的问题和反例500 多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。每一章分为三部分: *部分提纲挈领地给出了该章的基本概念和主要结果; 第二部分是问题,包括解法; 第三部分是反例。 本书所选的问题和反例比较典型,难度适中,构思新颖,解法精巧,富有启发性。书中不少问题和反例直接选自国内外有关学者所做的工作。本书对正确理解 数学分析 的基本概念,掌握 数学分析 的基本理论和技巧很有好处。 本书可供大学、大专数学系师生、数学工作者参考。
The controllability and observability are of great importance in boththeory and applications. A complete theory has been established for linearhyperbolic systems, in particular, for linear wave equations. There havealso been some results for semilinear wave equations. For quasilinearhyperbolic systems that have numerous applications in mechanics, physicsand other applied sciences, however, very few results are available evenwith space dimension one. This monograph is based mainly on the results obtained by the author andhis collaborators in recent years. By mea~s of the theory on the semi-globalclassical solution, a simple and direct constructive method is presentedin a systematic way to get both the controllability and observability in theframework of classical solutions for general first order 1-D quasilinearhyperbolic systems with general nonlinear boundary conditions.Corresponding applications are given for 1-D quasilinear wave equationsand for unsteady flows in a tree-like network of open can
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
《非线性物理科学:离散和切换动力系统(英文版)》用一种清晰简明、独特的观点讨论非线性离散动力系统稳定性和分叉理论,并分析了离散动力系统中稳定性及其切换的复杂性。本书首先介绍了含多重特征根的线性离散系统的解析解和稳定性理论,给出了详细的离散非线性动力系统的稳定性和奇异性分类;然后通过众多例子展示离散动力系统中的混沌及其分形性,并应用正映射和负映射讨论了非线性离散动力系统完整动力学,包括其不动点和混沌的阴阳解。本书还系统地讨论了具有搬运跳跃律的切换系统稳定性,将其作为描述连续和离散混合系统一般的形式;并介绍了一种广义的符号动力学——映射动力学,通过此动力学讨论在边界不连续动力系统的擦边分叉以及奇异吸引子碎裂机理,以帮助读者更好地理解离散、切换不连续和边界不连续动力系统中的规
本书是与华东师范大学数学系编《数学分析)(第四版)配套的学习指导书,主要是作为学习该课程的课后复习和提高之用。本书按主教材的章节次序编写,每节包括:内容提要、释疑解惑、范例解析、习题选解,每章后附有该章总练习题的解答及测试题。本书切合实际,针对学生学习中常见的错误、常出现的问题进行剖析、解答和指导,注意提高学生对数学分析的基本概念、基本理论、基本方法和技能的理解和应用,可作为数学类专业学生学习数学分析的参考书,对教师也有一定的参考价值。
本书提出了无限维动力系统、偏微分方程、数学物理交叉学科尖端领域的处理某些议题的新方法。书中的部分着重介绍了作者在达布变换和同宿轨道以及建立可积偏微分方程梅尔尼科夫积分方面取得的成果。第二部分则专注第二作者将达布变换应用于物理领域的工作。本书的特点在于作者及合作者发展的用达布变换建立可积系统中同宿轨道、梅尔尼科夫积分及梅尔尼科夫向量的崭新方法。可积系统(也叫孤立子方程)是有限维可积哈密顿系统在无限维的对应物,而上述所说的崭新方法所展示的是无限维相空间结构。本书可供数学、物理及其他相关学科领域的高年级本科生,研究生及该领域的专家参考。