实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书是探究小波分析中的多元小波构造和基于Box样条的以平行六边形为周期的小波构造的科研成果,并对小波分析在手指静脉图像增强中的应用进行了有益尝试。本书以长期以来探讨和解决相关问题而完成的较为精细的公式推导和实验研究为依托,具有较强的开拓性与实用性;在回顾了小波及其应用的发展历史的基础上,探讨了多元(M,R)插值型双正交可加细函数向量的构造,构造了基于Box样条的以平行六边形为周期的二元周期正交小波、双正交插值小波,推导出了一种具体实现的快速算法,同时提出了一种基于静态小波变换软硬阈值法去噪的四邻点阈值图像法,并将其应用于对手指静脉图像增强的实验研究中。本书可作为小波分析理论研究和应用的参考书籍。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................