本书是俄罗斯(苏联时期)杰出数学家N.л那汤松的一本重要著作,影响很广。本书在20世纪50-60年代曾是我国高校数学专业实变函数论课程的重要教学参考书。本版系根据原书1 956年第2版中译本,对照原书2008年第5版原文校订后重新出版的。 全书共有18章,主要内容为:可测集与可测函数、勒贝格积分、可和函数与平方可和函数等有界变差函数与斯蒂尔切斯积分、*连续函数与勒贝格不定积分,以及与上述内容对应的,在多元函数情形和无界函数情形的扩展;以小字排印的有:奇异积分与三角级数、集函数及其在积分论中的应用、超限数、函数的贝尔分类、勒贝格积分的推广(包括佩龙积分、当茹瓦积分和积分的抽象定义等)。这些内容虽然超出了教学大纲,但其丰富的材料为其他函数论方面论著中所不多见,有较大参考价值。为内容叙述的需要,还专辟一章(
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》 本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性代数方程组、**化等模型,着重建模、计算与应用三方面;然后分别给出了大数据领域、图像处理与压缩感知领域中的建模与计算案例,供读者学习、研究参考。本书是新时代数学深度应用、新工科迅猛发展形势下的一本应用与计算数学书,具有交叉性、集成性、应用性特征,以激发读者活学数学、活用数学的思考与热情。
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
本书共有七章,分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的一些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题。 本书适合大学师生及数学爱好者参考使用。
本书是关于广义函数的本专著。全书共分九章。书中系统总结、高度概括了作者L.施瓦兹当年得以获得“菲尔兹奖”的主要工作。讨论了广义函数的各种基本性质、运算与变换,特别是阐明了著名的Dirac函数其实是一个测度而不是一个函数。从而为Dirac测度在量子力学以及其他学科中的广泛应用打下了坚实的数学基础。 本书包含了当时与广义函数论有关的许多重要的理论和原始思想。在其法文版首次出版后半个多世纪的今天仍有理论价值和参考价值,尤其适合于数学系高年级本科生或研究生研读。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供一些数学基础知识。第2章量子化学基础。第3章量子力学的密度泛函理论,从霍恩伯格-科恩定理出发,讨论科恩-沈方法,介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,并给出应用举例。第4章统计力学基础。第5章统计力学的密度泛函理论,首先从巨势泛函和内在自由能泛函引出巨势极小原理,形成基本框架。自洽场理论也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,讨论局部密度近似,包括普遍化梯度近似。还进一步介绍密度展开方法、加权密度近似和基本度量理论等,并用许多实例加以说明。第7章对高分子系统的应用,介绍密度泛函理论方程的建立和求解,还介绍动态密度泛函理论。对于自洽场理论的应用,也做简要介绍
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
完全非线性椭圆方程(影印版)
本书是关于不连续动力系统动力学及其流转换性理论的专著、本专著提供了研究动力系统网络动力学及其行为复杂性的数学基础。书中介绍的不连续动力系统中的障碍向量场理论将彻底改变人们在动力学系统中传统的思维方式;棱上动力学及其流转换复杂性理论是人们讨论动力学系统的低维网络通道吸引的数学基础;具有多值向量场的流对其边界、棱和顶点的跳跃流理论给小厂动力系统网络的“台球”理论的数学基础;动力系统的相互作用理论是动力系统网络中的普适性原理,并应用于动力系统同步。 本书可作为应用数学、物理、力学及控制领域的大学师生及科研人员的参考书。
首先,这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不仅有这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。 其次,这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(
This book contains 80 original research and review paperswhich are written by leading researchers and promising youngscientists, which cover a diverse range of multi- disciplinarytopics addressing theoretical, modeling and computational issuesarising under the umbrella of ""Hyperbolic Partial DifferentialEquations"". It is aimed at mathematicians, researchers in appliedsciences and graduate students.
《复函数论导论》是一部介绍单复变函数解析理论本科生教程,内容体系十分严谨但又不失基础性。本书从基本定义开始,徐徐展开,除了微积分基本知识,没有做任何铺垫,深入讲解复分析的观点,可以说达到了这门学科的制高点。并且将这些主要知识点:如柯西定理,黎曼射影定理、mittag-leffler定理讲述的十分明朗。本书重在强调几何,专门有一章讨论共形射影,相当于讲述复函数理论的简明教程。每章都有大量的精选练习,从简单直接计算到很具有启发性思想的都具有。 读者对象:数学专业的本科生,研究生和相关专业的科研人员。
复分析是数学*中心的学科之一,不但它自身引人入胜,丰富多彩,而且在多种其他数学学科(纯数学和应用数学)中都非常有用。本书的与众不同之处在于它从多变量实微积分中直接发展出复变量。当每一个新概念引进时,它总对应了实分析和微积分中相应的概念,本书配有丰富的例题和习题来说明此点。 作者有条不紊地将分析从拓扑中分离出来,从柯西定理的证明中可见一斑。本书分几章讨论专题,如对特殊函数的完整处理、素数定理和Bergman核。作者还处理了H p空间,以及共形映射边界光滑性的Painlev 定理。 本书可用作研究生一年级的复分析教材,是一本很吸引人且现代的复分析导引,它反映了作者们作为数学家和写作者的专业素质。
本书是俄罗斯综合大学和高等技术学校使用的复变函数论教材。它基于前苏联著名数学家、科学家院院士拉夫连季耶夫的讲稿,由沙巴特补充整理,并经过多次修订,使内容更为合理,应用实例更为丰富,已成为该领域一本经典教材。 本书以共形映射为基本内容,把它作为工具,广泛应用于物理学、流体动力学、气体动力学、弹性力学和电气技术中实际问题的计算以及数学的其他分支。全书包括基本概念、共形映射、函数论的边值问题及其应用、共形映射的变分原理、函数论在分析上的应用、算子法及其应用、特殊函数等。 本书可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。