全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。
《现代几何学 方法与应用》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
本书系统地介绍了2维完备非紧致黎曼流形上全曲率的几何,其中包括黎曼几何预备知识、 Cohn-Vossen定理、 Huber定理、理想边界、割迹的结构、等周不等式、、射线的质量、割迹的极点、测地线的性态等内容。书中介绍并推广了许多经典的几何结果。通过研究射线的Busemann函数,讨论了完备开曲面的紧化问题。作者在每一章中都提出了一些值得考虑的尚未解决的问题,并且加入了许多插图以加深读者对内容的直观理解。本书假定读者已经掌握了微分几何的基础知识,可供大学数学系高年级本科生、研究生以及对现代微分几何感兴趣的数学工作者参考使用。
《点集拓扑与代数拓扑引论》是高等院校数学系本科生拓扑学的入门教材。全书共分五章。章介绍拓扑空间和连续映射等基本概念。第二章介绍可数性、分离性、连通性、紧致性等常用点集拓扑性质。第三章从几何拓扑直观和代数拓扑不变量两个角度,综合地介绍了闭曲面的分类。第四章介绍了基本群的概念以及应用。第五章介绍复迭空间的技术。本书的特点是叙述浅显易懂,并给出了丰富具体的例子,主干内容(不打星号的节)每节均配有适量习题,书末附有习题的提示或解答。 本书可作为综合大学、高等师范院校数学系的拓扑课教材,也可供有关的科技人员和拓扑学爱好者作为课外学习的入门读物。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类*次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
数的几何是数论的一个经典分支。本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质,Minkowski和第二凸体定理,Minkowski-Hlawka容许格定理,Mahler列紧性定理,二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。本书以大学理工科有关专业高年级学生和研究生为主要对象,也可供有关研究人员参考
【内容简介】 本书研究了反演变换及其性质、圆与反演变换、两圆的互反性等几何知识,系统地阐述了这些几何变换的理论和它们在几何证题方面的应用. 本书写得简明扼要,通俗易懂,引人入胜,是中学生、大学低年级学生以及他们的教师和几何爱好者的一本很好的参考书.
徐森林、金亚东、胡自胜、薛春华编著的这本《微分几何学习指导》是中国科学技术大学出版社出版的《微分几何》的配套书,它可帮助读者熟练地掌握微分几何的内容和方法。《微分几何学习指导》对《微分几何》一书的全部习题做了详细的解答,并增加了一些有趣的习题以及联系古典微分几何与近代微分几何的典型题目。 《微分几何学习指导》可用作综合性大学、理工科大学、师范大学数学系高年级学生、教师和研究人员的参考书。
本书共八章,主要包含圆锥曲线的由来、定义、方程、性质、切线和法线、作图、通论以及举例应用等内容,深入浅出,通俗易懂。 本书适用于中学生和数学教师参考使用,也可供数学爱好者作为科学普及读物阅读。
本书分为几何精度设计及几何精度检测两大部分。上篇第1~7章分别介绍几何精度设计基础;尺寸、表面、形状和位置等基本几何精度设计;几何精度综合设计以及圆柱、圆锥、螺纹、键等结合要素和齿轮、螺旋等传动要素的精度设计。下篇第8~10章分别介绍几何精度检测原理、误差评定、检测技术和量规检测。书末附有习题和供教学用的数据表格。本书以现行*国家标准和国际标准为依据,按照专业理论知识体系论述几何精度规范及其设计应用,并结合检测规范介绍几何误差检测理论与方法,强调对学生掌握精度设计与检测技术基础理论知识及其应用能力的培养,建立了几何精度规范学的新教学体系。 本书是普通高等学校机械工程学科学生的基础教材,也可供机械工程技术人员参考使用。
小说家兼数学家、历史学家和哲学家M吉卡(Matila Ghyka)写的这本《数学概览:生命·艺术·几何》,试图按照古典的美学观点——特别是柏拉图的观点,来解释并表达隐藏在自然之美、生物之美以及人类艺术作品之美背后的数学原理——或更准确地说,几何原理。 《数学概览:生命#艺术#几何》只涉及非常基础的数学知识,内含多幅插图,还有不少包含真知灼见或具有哲学意义的评述。作者通过分析我们熟悉的事物,给出关于几何学、人体和生物组织、建筑、美术作品中对称性和比例等知识相当全面的介绍。特别有价值的是关于古典建筑中对称性应用的讨论。 阅读《数学概览:生命#艺术#几何》不仅令人感到愉快,而且从中可以学到许多知识。它在古典艺术、建筑和生物学的背景之下,以对称性(或美)为关键概念,熟练地编织出一张综合历史、哲学