《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
《救命的数学》由詹姆斯·D·斯坦因所著,即使你上学时讨厌数学,你也会喜欢上《救命的数学》这本书。我真希望当年我的老师能像詹姆斯·斯坦因那样给我们上数学课:把数学作为解决现实世界中的日常问题的实用工具来介绍。斯坦因用朴实的语言和来自现实生活的例子,向大家演示了最基本的数学如何能帮助我们避免代价高昂的错误。斯坦因撰写的这本数学书简明易懂,轻松活泼,可以说他给大家表演了一场有关数学的文学帽子戏法。许多学生在学数学的时候都会问:“我什么时候才会需要这些东西?”本书就是这一问题的答案。
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
《论概率》迄今为止,代数沿袭已超过哲学家对其发展过程更深刻的探索,以至于概率往往被人认为是数学而不是逻辑。因此,《论概率》就概率的逻辑性展开阐述,书中有很多新颖的、创造性的理论,并有针对性地提出概率的系统性理论,以希望得到得到大家的指正和补充。
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
微分方程在数学以外的许多领域有着广泛的应用,它对数学领域中的许多分支起着有效的联结作用。本书是《Universitext》丛书之一,是一部理想的研究生教材。我们曾影印出版了第2版和第4版,第6版与第4版相比,内容做了较大的修改和补充,增加了90页的篇幅(近1/3内容),包括鞅表示论、变分不等式和控制等内容,书后附有部分习题解答和提示。
本教材是在*高等农林院校理科基础课程教学指导委员会领导下,针对农林院校人才培养目标,为开设概率论与数理统计课程的农林院校而编写的与《概率论与数理统计》教材相配套的教学辅导教材,供师生在教与学的过程中参考使用。 本教材针对主教材的前八章内容展开,为了方便教师、学生的教与学,各章均按:知识点介绍、教学基本要求与重点、典型例题、练习题及练习题参考答案五部分组成。知识点概括各章内容并蕴含解决问题的方法,教学基本要求则明确教与学的基本目标,典型例题给师生提供典型的问题及解决这些问题的常用方法,练习题供学生学习时训练之用。
本书共9章,内容包括:*事件及其概率、*变量及其分布、多维*变量及分布、*变量的数字特征、大数定律与中心极限定理、抽样分布、参数估计、假设检验、回归分析等。 本书在编写思路、体系安排和内容取舍上,*限度地适应各专业学生学习该课程和后续课程的需要;遵循“应用为主,够用为度”的原则,重点放在对概念、定理和方法的直观解释和数学表达上,力求用较少的篇幅使学生了解并掌握概率论与数理统计中的重要概念、理论和方法以及它独有的思维方式,进而为今后在实际问题中的应用打下良好的基础。本书由王波、韩兆秀主编。
本书用较多的篇幅详细地叙述了概率统计中的一些主要概念及方法产生的背景和思路,从直观入手逐步过渡到数学表述;坚持数学理论的完整性和严谨性,对基本的概念、定理和公式作严格、准确和规范的叙述,并尽量阐述其实际意义;本教材的重点放在对基本概念的准确理解、对常用方法的熟练掌握上;本书不仅从实例出发引入基本概念,还精选了大量能够加深理解基本概念、定理和公式的例题和习题,目的在于使学生对实际事物中的*性产生敏感、培养学生的概率统计直觉能力。
《概率论与数理统计》根据*颁布的全国高校经济管理类“概率论与数理统计课程基本要求”和“经济管理类研究生入学考试大纲”的相关要求,系统介绍了概率论与数理统计的基本理论和方法。主要内容包括:随机事件与概率,随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,数理统计的基本概念,参数估计,假设检验,方差分析,回归分析等。 《概率论与数理统计》内容深浅适度,语言流畅,例题类型多,并注意阐述概率统计在经济、管理及社会学中的应用,可作为高等学校经济管理类、人文社科类及相关专业的“概率论与数理统计”课程的教材或教学参考书。