本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
本书是高等院校本科生数学公共基础课程“概率论与数理统计”的学习参考书,全书根据教材章节顺序共分九章,每章按五部分撰写,分别为内容精要(知识归纳)、典型例题、习题详解、自测题及自测题答案等内容.内容精要是对内容和方法进行归纳总结,方便学生自学,对概率论与数理统计的知识体系有一个详细认识,并为下一步的专业学习奠定良好基础;典型例题是把基本理论、基本方法、解题技巧等方面的教学要求融于例题之中,从而达到举一反三、触类旁通的效果;习题详解给出了较详细的分析与解答,有助于学生在课后自主学习;自测题大多选自于各章相关的历年考试典型试题,并给出了相应的参考答案,供学生复习和自测使用.
哈罗德·杰弗里(SirHaroldJeffreys,1891~1989年),是英国剑桥大学已故著名物理学家兼应用数学家,他在20世纪30年代相继写出两本著作,即《科学推断》和《概率论》,它们对近几十年来贝叶斯学派的重新兴起有重要作用,值得一读。这本《概率论》侧重对科学方法论主要原则的阐述,旨在为读者提供一种在实践中可以应用、能根据观测数据进行推断而自洽的推理方法。为发展概率论,杰弗里在书中提出六条公理(公理7实为定理9所述乘积规则的推广)、三条约定;还为归纳推理中重要的部分,即根据过去的经验预测未来,提出了八条管辖原则,由此深刻论证了“从经验和数据中获取知识”乃是贝叶斯分析的实质这一观点;杰弗里在本书中还发展了K.皮尔逊的思想,强调“科学的一致性在于其方法而非其内容”,在当代各种新知识、新学科层出不穷的背景下,坚持这一
本教材是在*高等农林院校理科基础课程教学指导委员会领导下,针对农林院校人才培养目标,为开设概率论与数理统计课程的农林院校而编写的与《概率论与数理统计》教材相配套的教学辅导教材,供师生在教与学的过程中参考使用。 本教材针对主教材的前八章内容展开,为了方便教师、学生的教与学,各章均按:知识点介绍、教学基本要求与重点、典型例题、练习题及练习题参考答案五部分组成。知识点概括各章内容并蕴含解决问题的方法,教学基本要求则明确教与学的基本目标,典型例题给师生提供典型的问题及解决这些问题的常用方法,练习题供学生学习时训练之用。
韩明编著的这本《概率论与数理统计教程》共分十章,前五章是概率论部分,内容包括*事件及其概率、*变量及其分布、多维*变量及其分布、*变量的数字特征及特征函数与极限定理;后五章是数理统计部分,内容包括数理统计的基本概念、参数估计、假设检验、方差分析及回归分析。 本书既有继承国内相关教材传统的部分,又有汲取国外相关教材中流行的直观、灵活的风格,本书图文并茂,注重可读性,着重讲解基本概念、统计思想,强调理论与方法的应用,并把数学实验与数学建模的思想方法融入教材中。 《概率论与数理统计教程》可供高等院校数学类、统计类等有关专业作为本科生教材使用,也可供相关专业的高年级本科生及研究生作为教材使用,还可供相关专业研究者和广大自学者参考。
本教材是根据高等学校基础理论教学 以应用为目的,以必须够用为度 的原则,参照国家*制订的《概率论与数理统计课程教学基本要求》而编写的。 全书共九章,即*事件与概率、*变量及其分布、多维*变量及其分布、*变量的数字特征、大数定律及中心极限定理、数理统计的基本概念、参数估计、假设检验、方差分析与回归分析。每章均配有习题,书后附有参考答案。 本书可作为理工科大学及专科院校的数学教材或参考书,也可作为综合大学和高等师范院校非教学专业及各类成人教育的数学教材或参考书。
本书给出了《概率论与数理统计》第5版(韩明主编,同济大学出版社)中大多数习题的详细解答。作为补充,还给出了与原教材中的例题、习题不重复的一些典型例题,选取近些年 全国硕士研究生人学统一考试数学试题 (概率统计部分)的部分 考研真题 ,并给出了详细解答。原教材中有一些计算、画图是用MATLAB软件来实现的,本书中也有个别习题是用该软件来实现的。本书既可以与原教材配套使用,也可以单独使用。本书可作为高等院校各专业(非数学类) 概率论与数理统计 课程的学习辅导书。
杨宏等编著的《工程数学--线性代数与概率统计(第2版)》是在高等教育大众化和办学层次多样化的新形势下,结合工科学生工程数学的教学基本要求,在独立学院多年教学经验的基础上编写而成。 《工程数学--线性代数与概率统计(第2版)》系统地介绍了工程数学的基本理论,内容包括线性代数、概率论、数理统计等。本书保持了对数学基础课程的较高要求,同时力争适应工科学生的应用性特点,在内容和结构的处理上尽量削枝强干、分散难点,力求结构严谨、逻辑清晰、通俗易懂,并附有大量的例题和习题。 《工程数学--线性代数与概率统计(第2版)》适合高等院校工科各专业本科学生使用,也可供教师、工程技术人员参考。
《论语读记》是对《论语》逐篇逐章逐句逐字进行注释、翻译、解读的学术著作。全书约23万字,每篇有 题解 ,概括大意。每章分为 原文 注释 译文 读记 四个部分。笔者自上个世纪80年代于大学课堂上学习《论语》以来,隔上几年又重温一次,每一次读《论语》都有新的认识和体会,真正是常读常新,断断续续形成了若干心得札记,近两年进行系统整理,经过三次较大的修改,遂成此书。坊间注译解读《论语》的书可谓汗牛充栋,但不少读本随意性太大甚至臆说乱解,把一部忧国忧民忧人类的伟大思想著作或弄成鸡汤读物,或弄成管理秘籍,或弄成谋略法则,这类的解读可以说离题太远。笔者试图从原文出发,尽可能准确地读懂《论语》原意,并从人生和现实出发,探寻《论语》对人生对现实的意义。为此,笔者在选择参考书时坚决舍弃某些讲坛明星、畅销作
这本书别开生面,内容充实,富于思想,因而广泛传诵。书中一开始就提出,作为一个科技工作者,应该兼备德识才学,德是基础,而且要在实践中来实现。王老师本人就是一位成功的德识才学的实践者。这本书在是“文革”十年后别具一格的读物。数学界老前辈苏步青院士作序给予很高的评价:“王梓坤同志纵览古今,横观中外,从自然科学发展的历史长河中,挑选出不少有意义的发现和事实,努力用辩证唯物主义和历史唯物主义的观点,加以分析总结,阐明有关科学发现的一些基本规律,并探求作为一个自然科学工作者应该具备的一些怎样的品质。这些内容,作者是在‘四人帮’形而上学猖獗、唯心主义横行的情况下写成的,尤其难能可贵……作者是一位数学家,能在研究数学的同时,写成这样的作品,同样是难能可贵的。”《科学发现纵横谈》、以清新独特
本书与浙江大学盛骤、谢式千、潘承毅编写的《概率论与数理统计》(第四版)配套。全书共分十四章,每一章又分为若干节,按照教材顺序对每个章节内容进行清晰梳理、深入讲解,每一章内容讲完后,再对整章内容重点进行回顾和加深,然后设计该章同步自测题。全部十四章教材内容辅导完毕后,还给出了教材上所有习题的详细解答。 讲解结构三大部分: 一、教材内容讲解这部分由两块组成:教材知识全解、典型例题解析。 1.教材知识全解包括两部分:本节知识结构图解、重点及常考点突破 (1)本节知识结构图解这一部分用直观、形象的图表形式,将该节知识结构、相互联系、 逻辑关系清晰地展示给读者。便于读者对比各个概念、性质和定理,在比较中加深理解,使知识更加系统化。 (2)重点及常考点突破这一部分将该节
非帕斯卡概率逻辑是美国逻辑学家乔纳森 柯恩 创立的、有别于帕斯卡概率逻辑的一种新型逻辑,该 逻辑系统的*大的特征是不满足帕斯卡公理系统的否 定互补性原理和乘法法则。沈振东*的《非帕斯卡概 率逻辑的哲学基础与应用研究》立足于三个研究视角 :一是在传统的归纳逻辑理论的演化序列中探寻该逻 辑系统的哲学基础的合理性;二是从可能世界语义学 角度对该种逻辑进行形式刻画,并建立逻辑系统;三 是该逻辑系统以相关变量等概念为工具尝试性地对帕 斯卡概率不解释的领域进行解释,或者对应用帕斯卡 概率而导致悖论性的结论进行消解。
本书在原《概率统计( 工程数学)》第三版的基础上,根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数字特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析·书中各章 附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在教育 部制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概 率统计中的术语与记号。 《概率统计(第4版)》以提高读者解题能力与解决实际问题能力为基本出发点,从实例引入抽象的基本概念,从抽象的数学定理又回到具体的应用 问题,有助于读者较快地掌握近代的概率统计知识。本书可作为高等院校本 科生(包括理工类与经济类)概率论与数理统计课程的教材或参考书