本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的教师和研究生
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
《管理运筹学及智能方法》主要是针对管理类的研究生编写,全书共3篇11章。篇包括运筹学传统内容共6章,其中章线性规划、第3章动态规划和第4章多目标规划主要是对本科阶段运筹学的复习与回顾,而第2章非线性规划和第5章排队论一般在本科阶段都没有系统学习,作为研究生无疑应该认真学好这两章;第2篇共3章,每一章都介绍一种典型的搜索算法,随着计算机技术的发展,非导数优化算法逐步成熟和完善,这些算法对于开展科学研究是不可多得的工具;第3篇共2章,主要介绍神经网络和模糊系统的基本概念,面对日益复杂的社会经济系统,两种智能方法所具有的鲁棒性和容错性用于复杂系统仿真具有特殊的意义。 全书每章都配备数量的习题,有的章节还附有相应的计算程序。诸克军主编的《管理运筹学及智能方法》适合于高等院校管理类专业研究生或者博士生
王跃钢编著的《动态数学模型测试建模方法》系统地介绍了动态数学模型测试建模的概念、理论与应用技术,内容包括建模方法基础知识、建立动态数学模型的频域方法和时域方法、测试数据时间序列分析建模法以及非平稳数据建模方法等。 《动态数学模型测试建模方法》不但注重基础理论的讲解,也注重工程算法的研究。书中的应用实例均取自作者的研究成果。 《动态数学模型测试建模方法》可作为工科高等院校控制类专业高年级本科生和研究生的教材,也可作为该领域科技工作者的参考书。
王跃钢编著的《动态数学模型测试建模方法》系统地介绍了动态数学模型测试建模的概念、理论与应用技术,内容包括建模方法基础知识、建立动态数学模型的频域方法和时域方法、测试数据时间序列分析建模法以及非平稳数据建模方法等。 《动态数学模型测试建模方法》不但注重基础理论的讲解,也注重工程算法的研究。书中的应用实例均取自作者的研究成果。 《动态数学模型测试建模方法》可作为工科高等院校控制类专业高年级本科生和研究生的教材,也可作为该领域科技工作者的参考书。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是配套于运筹学教学的实验教材,介绍了在Excel平台下“规划求解”的操作及其方法。全书涉及运筹学的主要分支及多个有代表性的管理实践问题,所有知识点均依托生动的案例逐一展开,图文并茂,为读者提供完整的建模原理和求解过程。 本书可用于普通高等院校本科运筹学课程上机实验部分的教学,实验环节建议在4至8个机时。如教师以本书案例串讲,建议16至32个课时。本书也可以作为工商管理硕士(MBA)和公共管理硕士(MPA)“数据模型与决策”、“经济数学”、“管理科学”等课程案例教学的补充材料。本书亦可作为管理决策人员案头常备的操作指南。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。