本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
??????《极简宇宙史》内容简介:我们的存在的确让太阳系与众不同。夏夜,你躺在沙滩上,仰望夜空。一颗小小的流星安静滑过,还来不及许愿,不可思议的事情发生了:你一下子穿越五十亿年,走进时光的旅行…… ???????霍金亲传弟子、物理学博士克里斯托弗·加尔法德带领我们踏上一场关于宇宙的过去、现在和未来的惊奇之旅。不需要图表和方程式,只需凭着奇诡的想象,我们就可走向衰亡的太阳表面,飞越遥远的星系,感受来自黑洞的死亡魅力……你可以轻松读懂时至今日的宇宙神奇,继续探究关于上帝的存在、时间的起源以及人类的未来。
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
《运筹学原理与算法》与现行的其他运筹学教材相比,不涉及非线性规划,但增加了网络*选址问题,扩充了网络规划和分配问题的内容。对一些经典运筹问题,补充了一些运筹理论,还补充了一些更加简便、实用的运筹算法。《运筹学原理与算法》的另一个特点是,把运筹方法的程序设计纳入教学内容中,详细、完整、规范地给出了各种运筹方法的算法步骤。 《运筹学原理与算法》是针对应用数学专业本科生编写的教材,也可作为经济管理、系统工程、计算机工程等专业的本科生教材,还可供相关专业研究生及科技工作者参考。
由中国运筹学会编著,介绍了运筹学学科发展情况,并对本学科的进展做了全面而准确的总结。学会对所负责的学科发展研究初稿进行研讨及学术交流后,为研究成果的后完成提出实质性修改意见和建议。整套丛书的特点:,确保权威性,注重研究工作的质量,确保研究报告为反映各学科发展情况的*权威性的指导性丛书;第二,体现前瞻性,学科涉及面较大的不要求面面俱到,应注重体现*热点、前瞻和重大学术进展;第三,将2007年第四季度学科发展的内容纳入进去,做到严谨、完整;第四,时效性好;第五,整体性强。
,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题, 重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免 糟”、“如何寻求 好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
根据运筹学的学科特点,本书对传统运筹学的内容和方法做了较大的改革。在系统地介绍了运筹学的基本概念、基本原理、基本思想、基本方法的基础上,借助于专业的优化软件Lingo来求解模型,特别突出解决实际问题的实用性。全书共分8章,主要内容包括线性规划、运输模型、整数规划、目标规划、动态规划、图与网络分析、排队论、决策论。书中除了精选的例题外,每章后附有大量的习题,章末附有实用案例,供教学和自学用。
经典科学革命理论中另一个被广泛征引的观念是科学共同体对某一理论或学说的认同。就控制论思潮的萌动及其终由二战所催生而言,确实体现了科学群体的共意,然而在其后一段较长的传播过程中,在控制论所涉及的不同知识领域,以及在不同的国家中,却出现了一些协调甚至相当诡异的现象。 本书笔者尝试从传播的角度,选取控制论发生和传播鼎盛的1940—1970这三十年时间,集中对这一学科理论在美国的发生和发展,以及它在两个社会主义国家——苏联和中国的传播状况作个案分析。行文采取变焦分析的手法展开对控制论的考察,以图揭示控制论作为一门横断型学科,其发生发展的自身规律,以及意识形态何以影响它的传播,控制论发展的内在规律又如何在国际政治和意识形态下对理论传播发挥作用。
张文会主编的《交通运筹学》系统地介绍了交通运筹学的基本理论和方法,特别注重运筹学在交通运输领域的实际应用。全书通过案例来说明基本概念,每章附有习题,供学生课后复习。主要内容包括:线性规划、线性规划的对偶理论和灵敏度分析、整数规划、运输与指派问题、目标规划、动态规划、网络模型、排队论、决策论、对策论、网络计划技术。 本书可作为高等学校交通工程、交通运输、物流管理、汽车服务工程等专业的本科生教材,也可作为研究生教学参考书。
本书系统论述离散时间排队的思想原理和主要结果,建立了一个完整的理论框架.内容包括Markov 型、Geom/G/1 型、GlIGeom/c 型、D-BMAP/G/1 型等各种离散时间排队系统的建模和分析,并简要介绍了离散时间排队网络.除经典模型外,还详细讨论了近些年出现的休假和工作休假离散时间排队系统,并包含计算机通信网络和卫星通信系统性能分析的应用实例.其中部分内容是作者近年来的研究成果.本书叙述深入演出、论证严谨、图文并茂,注意先进性、系统性和实用性.
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国很好畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分
本书依据经济管理类专业学生培养特点组织内容,介绍了线性规划、对偶理论、整数规划、运输问题、目标规划、图论、动态规划、网络计划技术等运筹学主要分支的基本概念、理论方法和计算机求解,运用大量案例深入浅出地介绍了运筹学在经济管理领域的应用,强调运筹学学科的应用性,加强应用问题建模分析思路的介绍,强调实际问题的计算机工具求解,运用Excel软件求解运筹学问题。本书还配有教学大纲、PPT课件、习题及补充习题、案例分析及其答案等学习教辅资料。
"Stochastic optimization in continuous time"(AuthorFwu-RanqChang)is a rigorous but user-friendly book on the application ofstochastic control theory to economics. A distinctive feature ofthe book is that math-ematical concepts are introduced in alanguage and terminology familiar to graduate students ofeconomics.
《高等院校理工科教材:有限元法基础(第2版)》分为十章,章简要介绍有限元法的概念、发展和基本思想及特点;第二章从弹簧系统人手介绍桁架系统有限元求解方法,引入直接刚度法的概念;第三章采用直接刚度法和虚功原理两种方法推导了刚架系统的有限元计算格式,引人位移插值函数的概念;第四章在简要介绍弹性力学一般知识的基础上,运用第三章引入的虚功原理和推导过程推导了连续体平面力学问题的有限元列式,着重介绍了三角形单元和矩形单元;第五章讨论了轴对称问题的特殊性和轴对称问题的有限元求解方法;第六章介绍应用最为广泛的等参数单元,并引入数值积分的概念;第七章通过热传导问题引入变分法的基本概念并采用变分原理推导温度场问题有限元计算格式;第八章通过流体流动问题介绍加权余量法及采用加权余量法推导流场问题有限
本系列丛书是以美国大学生数学建模竞赛(MCM/ICM)题为主要研究对象,结合竞赛特等奖的论文,对相关的问题进行深入细致的解析与研究。本辑的主要内容包括:棒球 *击球点 问题、重新平衡受人类影响的生态系统问题、泛太平洋垃圾带问题、犯罪情报分析的建模问题、交通环岛的优化设计问题和能源与移动电话问题。 本书可作为指导大学生学习和准备美国大学生数学建模竞赛的主讲教材,也可作为大学生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时可供研究相关问题的人员参考使用。
本书系统介绍变分分析的基本理论,讨论变分分析在最优化理论与算法分析中所起的基础性作用.变分分析部分包括宇窗空间与锥、集值映射、集合的变分几何、函数的广义微分、单值函数的Lipschitz 性质和集值映射的Aubin 性质、隐函数定理与系统稳定性.最优化理论部分包括最优性理论(含有Lipschitz 函数优化的Clarke 乘子原则以及均衡约束数学规划问题的最优性条件)、非线性规划的扰动分析、二阶锥的变分分析与二阶锥约束优化问题的扰动分析,以及半正定矩阵锥的变分分析与半定规划问题的扰动分析.最优化的算法部分包括Newton 方法和邻近点方法,邻近点方法部分介绍Moreau 包络、等式约束的非线性规划问题、非线性二阶锥约束优化问题与非线性半定规划问题的增广Lagrange 方法的收敛速度等.
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的优秀论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。 《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的