本书将基础经济学、高频数据的经验基础和数学工具以及模型联系在一起,为读者在试图理解和设计成功的交易算法时面对的各种各样的问题,提供足够广阔的视野。本书分为三个部分。第一部分给出了交易市场的基本概念、理论以及经验事实。第1章介绍了电子交易市场、市场参与者和订单簿。第2章概述了金融微观结构市场模型。第3章和第4章对市场进行了实证和统计分析。第二部分也就是第5章介绍了交易算法分析相关的数学工具。第三部分深入研究算法交易策略的建模。第6-8章涉及最优执行策略,即代理商必须在预先指定的窗口上清算或收购大头寸,使用市价单或限价单进行持续交易。第9章涉及基于交易量日程的执行算法,为希望跟踪市场整体交易量的投资者制定战略。第10章展示了做市商如何在限价订单簿中选择限价单的发布位置。考虑了包括对库存风险的
数学不仅有抽象的计算和公式,还与人类文化和思维紧密相关。 数学对生活的影响无处不在,它甚至可以改变我们对世界的认知。原来数学和语文、美术、科学这些学科竟然密不可分。用故事串起数学明珠,带你畅游神秘数学王国,书中每一页都充满惊喜与挑战!从电影里幸存者的故事,到游戏中藏着的概率,再到战争中的密码学,都有数学在其中起作用!不仅如此,数学还有属于自己的美学和哲学。它像艺术家一样创作美丽的图案,像哲学家一样思考世界,像诗人一样描绘世界,像侦探一样揭破谜案。 加入这场数学派对,你会发现:数学或许不是你以为的那样,它不仅不枯燥,还蕴藏着无限的乐趣。
图论作为数学的一个重要分支,已广泛应用于计算机科学、信息科学、生命科学、管理科学等领域。平面图是图论的主体内容。由于诸如四色猜想、唯一4-色平面图猜想和九色猜想等的研究对象均为极大平面图,故从1879年至今,学者们从各种角度展开了对极大平面图的研究。本书系统地介绍极大平面图的结构、构造及着色等相关理论,内容包括:基于放电变换的极大平面图乃至一般平面图的结构特征研究;四色猜想的计算机证明;极大平面图的几种构造方法;极大平面图生成运算系统;极大平面图色多项式递推公式;唯一4-色极大平面图猜想的研究;极大平面图中Kempe 变换与σ-特征图理论等。
《高级计量经济学》是雨宫健教授在长年担任Joural of Econmometrics主编之后编写的研究生层次的计量经济学教材,融合了计量经济理论研究的方法和技巧,也是一本值得计量经济学的专业人员认真阅读的计量经济学著作。在计量经济学理论研究的学术论文中,《高级计量经济学》是一本被广泛引用的参考文献,迄今为止的累计引用数高达3 200次以上。《高级计量经济学》着重讨论微观计量经济学涉及的各种理论问题,特别是在微观计量分析的定性模型的详细讨论中融入了作者的研究心得经验。《高级计量经济学》从经典小二乘法出发,结合拓展的各种回归分析方法,说明计量经济理论涉及的大样本理论,利用大样本理论讨论微观计量分析出现的极值统计量的性质及各种微观计量模型的统计推断问题。考虑到计量经济理论体系的完整性,《高级计量经济学》也适当介
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
本书系统介绍了随机传染病动力学模型建立、分析以及数值分析,以期为传染病防控提供科学依据。全书共8章:第1章详细介绍了传染病动力学仓室建模方法和基本再生数的计算、随机模型构建及研究进展等;第2章给出了随机传染病模型研究需要的基础知识,包括概率空间、随机过程、It*微积分、随机微分方程及其稳定性、Markov半群、不变测度以及Fokker-Planck方程等;第3,4,5章分别研究了人口流动、干预策略、媒体报道等因素对随机传染病模型动力学行为的影响机制;第6章给出了猫免疫缺陷病毒模型的随机分析,特别是考虑了季节变化对疾病传播的影响;第7章研究了具有均值回归过程的随机传染病模型动力学行为;第8章给出了随机传染病动力学模型研究的基本算法及其相应的R程序代码。
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
作者根据多年数学建模竞赛辅导工作的经验编写本书,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏*小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。 本书所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。 本书所有例题均配有Matlab或Lingo源程序,程序设计简单精炼,思路清晰,注释详尽,有利于没有编程基础的读者快速入门。同时很多程序隐含了作者多年的编程经验和技巧,为有一定编程基础的读者深入学习Matlab、Lingo等编程软件提供了便捷之路。 本书配有丰富的课件资源,包括教师授课PPT课件、主教材的程序和
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
《数学奥林匹克在中国》介绍了从1986年至2013年的国际数学奥林匹克竞赛在中国的发展情况,并着重介绍了从1986年以来历届国际数学奥林匹克竞赛的试题及解答技巧,后介绍了历届中国数学奥林匹克竞赛试题。 《数学奥林匹克在中国》适合准备参加高中数学奥林匹克竞赛的学生及辅导教师和广大数学爱好者参考阅读。
本书以Xilinx公司的Vivado FPGA设计套件为基础,以Xilinx大学计划(Xilinx University Program,XUP)的Artix-7板卡为硬件平台,将数字逻辑设计与硬件描述语言Verilog HDL相结合,循序渐进地介绍了基于Xilinx Vivado的数字逻辑实验的基本过程和方法。本书主要内容包括硬件开发平台介绍、软件平台介绍、FPGA设计实例、组合逻辑电路实验、时序逻辑电路实验、数字逻辑设计和接口实验及数字逻辑综合实验。书中包含大量的设计实例,内容翔实、系统、全面。
本书以作者团队进行的农业、林业、草业、生态等学科试验及获得的调查数据作为主要研究对象,全面阐述数量研究方法在这些学科中应用的基本特征和学科特点,并总结归纳数量研究方法的灵活性、普适性和独特性;书中相关案例可作为农学、林学、草学、生态学及生物学应用的基本模式。
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21 章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic 回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)间序列分析、Markov 链、R/S 分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者可以通过实例解析了解有关方法的应用要领和分析思路。
本书提出了时间序列混合智能辨识、建模与预测的理论和方法。内容分四篇共16章。篇阐述了时间序列分析的重要性,从文献计量学的角度对时间序列的**国际研究进展进行了归纳总结,系统阐述了当前国内外主流时间序列辨识、建模与预测的计算策略和经典算法体系;第二篇介绍了铁路沿线风速混合智能辨识、建模与预测理论方法,包括基于特征提取的GMDH神经网络、长短期记忆深度网络、卷积门限循环单元网络、Boosting集成预测和Stacking集成预测模型;第三篇提供了智慧城市大气污染物浓度的特征分析方法及浓度时间序列建模与预测模型,包括点预测、区间预测、聚类混合预测和时空混合预测等理论;第四篇对金融股票价格时间序列进行特征提取与混合预测,包括贝叶斯统计预测模型、BP/Elman/RBF等神经网络预测模型、CNN/LSTM/BiLSTM等深度网络预测模型。本书提供
A.H.施利亚耶夫编著的《*金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“*金融数学全书”。 第二卷有关“理论”的四章是:“*金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住
本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函极值问题,分别用Ekeland变分原理和下降流线方法给出了著名的山路定理,应用山路定理和最小作用原理研究二阶半线性椭圆方程边值问题,同时包括与单调梯度映射相关的变分方法;最后第11章致力于变分方法在具体工程问题中的应用。
本书介绍矩阵空间、λ矩阵与Jordan标准形、矩阵分析、矩阵微分方程、矩阵扰动分析和广义逆等矩阵论的基本内容,并讲述这些内容的基本理论和计算方法.
无