《线性代数习题精解及考研辅导(第3版)》是高等教育出版社的《工程数学线性代数(第六版)》(同济大学数学系编)的辅导教材,包括了知识逻辑结构图,学习目的要求,基本内容提要,解题方法归纳,课后习题精解,考
本书分为3篇,篇,高等数学;第二篇,线性代数;第三篇,概率论与数理统计初步
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
对考研数学试卷总结了203个核心题型,并对每个题型进行详尽分析。
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
《考研数学复习指南》从1995年出版以来,历经十几年的再版和修订,集合了编者几十载的教学经验、对考研命题的钻研把握,以及众多考研学子的复习心得、实战体会,已成为广大考研读者的良师诤友,同时也因其重点突出的内容总结和典型题目的汇编,成为众多教师同行的教学参考。在过去的十几年中,《考研数学复习指南》帮助许许多多考研学子圆了梦想,帮助使用过《考研数学复习指南》的学子们应用“数学的思维”方法在学习、工作和研究中取得丰硕的成果。
海文考研2015考研数学高等数学基础教材是一本适用于考研基础阶段复习高等数学学科、海文考研2015考研数学高等数学基础教材将教材内容与考试精神完美融合在一起的专业备考教材,可替代本科教材独立使用。海文考研2015考研数学高等数学基础教材为编者基于丰富的一线教学和考研辅导经验,严格依据*考纲范围及要求精心编写而成。本书与考纲同步以“章”为单位编写,各章均包括本章概要、考查要点详解、重要公式结论与方法技巧、常见误区警示、本章同步练习、习题答案解析六大栏目,从多个角度向读者详尽阐释高等数学学科的基本概念、基本理论、基本方法,并且提供大量针对于考试要求的知识精华汇总、贴心易错提示等精彩内容。 书中的知识讲解像教材一样基础、透彻,详尽到位,全面覆盖考点无死角,注重揭示知识点的本质及内在关联;例
对考研数学试卷总结了170个核心题型,并对每个题型进行详尽分析。
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
海文考研2015考研数学真题大解析(数学一)对近14年真题进行以下两方面解析: 一是分类纵览,对14年试题所涵盖的考点与题型进行归类,目的是使考生对考试大纲在考试题目上的体现方式一目了然。 二是全面解析,分为五个板块进行解析。答案,客观题先给出终结果,以便考生在自测之后对照;考点指南,指出题目所考查的知识点,命题的目的等;思路分析,对解答题目的入手点进行分析,将题中所给条件与所求的结论结合考虑,给出由条件可得到的结论或能联系到的公式及其与所求结论之间的差距,从而得到合适的得到题目结论的路径;解答过程,对题目进行具体解答。编者尽量给出多种方法解答同一题目,其中既包含常用方法、经典方法,也包含一些原创的但行之有效的快捷方法。考生可以通过多种解答方法了解题目解答的灵活性,同时也可以
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
数学是一门建立在基本概念、基本理论基础之上的推理演绎科学。有人把学数学比喻成爬台阶,下面几级上不去,就无法再向上爬了,很有道理。只有打好坚实的基础,才有可能掌握运算的方法和技巧。陈文灯编著的这本《考研数学基础核心讲义(第4版)》针对线性代数、概率与统计公式比较多,难记忆的特点,采用表格法,使之一目了然。本书对考研学生打基础很有参考价值,对在读本科生、大专生也是良师诤友。
《海文考研黄皮书2015考研数学高等数学辅导讲义》是工学类、经济类和管理学类硕士研究生入学考试科目“高等数学(微积分)”复习指导书。紧扣*数学考试大纲,贴近考试实际要求,内容丰富。全书共分为十章,内容包括:函数、极限与连续,一元函数微分学,一元函数积分学,向量代数和空间解析几何,多元函数微分学,多元函数积分学,无穷级数,微分方程,微积分在经济中的应用,差分方程及附录(综合练习题)。本书结构新颖,每一章按照本章的重点内容与常见的典型题型,基本概念、性质、公式和定理,习题,习题的解答与分析四部分编写。概念叙述简捷,解题思路清晰,对典型题目从多个侧面、不同角度、用多种解法进行讲解,注意对考生理解基本概念、求解多种类型基础题目和综合解题能力的培养,是考研者较好科目的复习指导书和良师益友。本
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
本书精心命制和整合了大约1000道考研数学复习的题目,其主要来源是:(1)与考研数学命题密切相关的重要资料.这里包括考研数学命题前的全国征题、部分考研命题的备考题(所谓考研数学B卷考题)、命题人退下来以后命制的题目、某些全国大学数学教学基地的考试题库等,这些题一般会综合了多个知识点,有一定的难度和区分度.(2)前苏联、全国、各省市大学生数学竞赛试题的改编题.对经典的大学数学竞赛题如何进行改编,使其适合考研的风格和特点,这既是对未来考题的预测(因为这些竞赛题中有很多题目是 潜在的考试题 ),也是本书的一大特色.试题改编是颇费一番周折的,本书中一些重要题目后的 注 ,看似题外之话,但是字斟句酌、涵义深刻,请读者仔细品味,必会有所收获.当然,基于竞赛基础,这些题一般也会是综合题,难度高、区分度大.(3)
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
马菊侠、程红英主编的《高等数学》将高等数学的内容按照问题与题型分类,引导思路,比较知识,归纳方法,诠释技巧。全书包含十二章,每章分为五个部分:方法归纳与相关知识比较;题型归类与方法点拨;精选习题与解答;强化训练;参考答案。书末附有六个附录,包含高等数学中常用的初等数学公式;高等数学期中、期末试题与解答;2016年全国硕士研究生入学数学试题与解答。 本书题型新颖、多变性强、梯度较大。题目取材于同济大学七版《高等数学》及马菊侠等编写的《高等数学》部分习题,本科考试题,近年的全国硕士研究生入学考试题。 本书可作为本(专)科学生学习高等数学的辅导教材,也可作为考研学子复习之用。此书可以帮助读者深入领会方法与技巧,增强分析问题、解决问题的能力,提高应试水平。
本书是数学类专业考研复习指导书。本书通过精选的名校真题,讲解典型问题的方法和技巧。全书共分九章,包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵若当标准型、欧几里德空间等。本书适合作为自学材料,也可作为相关课程的培训教材。
本书对近14年真题进行以下两方面解析: 一是分类纵览,对14年试题所涵盖的考点与题型进行归类,目的是使考生对考试大纲在考试题目上的体现方式一目了然。 二是全面解析,分为五个板块进行解析。答案,客观题先给出终结果,以便考生在自测之后对照;考点指南,指出题目所考查的知识点,命题的目的等;思路分析,对解答题目的入手点进行分析,将题中所给条件与所求的结论结合考虑,给出由条件可得到的结论或能联系到的公式及其与所求结论之间的差距,从而得到合适的得到题目结论的路径;解答过程,对题目进行具体解答。编者尽量给出多种方法解答同一题目,其中既包含常用方法、经典方法,也包含一些原创的但行之有效的快捷方法。考生可以通过多种解答方法了解题目解答的灵活性,同时也可以了解命题所设置的小“陷阱”以提醒自