本书是一本新颖、实用的线性代数教材,涵盖线性代数的基础知识和一些有趣的应用,目的是帮助学生掌握线性代数的基本概念及应用技巧,为后续课程的学习和工作实践奠定基础.与以前的版本相比,第6版根据线性代数的新应用发展,做了大量的更新,重新编排了第4章,将马尔科夫链移至第5章,新增加了有关信号处理的内容,并且增加了全新的一章 优化,而且在网上为学生和教师提供了进一步的技术支持.本书主要内容包括线性方程组、矩阵代数、行列式、向量空间、特征值和特征向量、正交性和最小二乘法、对称矩阵和二次型、向量空间的几何学、优化等. 此外,本书包含大量的练习题、习题、例题以及课题研究,可加深学生对理论的理解。
本书是与同济大学数学科学学院编写的《高等数学》(第八版)相配套的学习辅导书,由同济大学数学科学学院的教师编写。本书内容由三部分组成,第一部分是按《高等数学》(第八版)下册的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学统一考试数学试题选解,所选择的试题以工学类为主,少量涉及经济学类试题;第三部分是同济大学高等数学试卷选编以及考题的参考解答。 本书对教材具有相对的独立性,可为学习高等数学的工科和其他非数学类专业学生以及复习高等数学准备报考硕士研究生的人员提供解题指导,也可供讲授高等数学的教师在备课和批改作业时参考。
本书为 十二五 普通高等教育本科*规划教材《分析化学》(第6版,上册)的配套教学参考书。全书共11章,编写顺序与主教材一致,对主教材的思考题和习题进行了详细解答,部分章节还增加了一些补充题。 本书既可作为高等学校化学类及相近专业的本科生学习分析化学课程的习题集,又可作为高年级学生考研复习阶段的参考资料,同时也可供广大教师作为教学参考书使用。
本书是与程守洙、江之永主编,胡盘新等修订的《普通物理学》(第七版)相配套的教学用书,全书按照主教材的章节顺序编排,每章都先归纳总结了本章的解题方法,再对教材所有习题作了分析和解答。解题过程中编者注重分析解题思路和解题方法,旨在启迪思维,提高学生分析问题和解决问题的能力,对有些习题还给出了多种解题方法,有的还对结果进行了讨论,以开阔读者的思路。 本书适用于高等学校理工科各专业,特别是使用程守洙、江之永主编,胡盘新等修订的《普通物理学》(第七版)的学生作为学习参考书,也可供相关教师在教学中参考。
本书主要介绍流式细胞术的原理、操作及应用,分为概述、流式细胞仪的原理、流式图、流式细胞术的基本操作与技巧、流式分析术的应用和流式分选术的应用6个部分。概述部分介绍基本概念和几款常见的流式细胞仪;原理部分具体介绍流式细胞仪的液流系统、光路系统、检测分析系统和分选系统;流式图部分主要介绍了流式通道、流式直方图、流式散点图和流式等高线图;操作部分介绍了样品制备、荧光素偶联抗体及标记、光电倍增管电压设定、对照设置、补偿调节、阈值设定、死细胞问题处理、分选模式选择、上样速度控制、分选设门原则、分选基本步骤等内容;流式分析术的应用部分具体介绍了流式细胞术在免疫学方面的应用,并且扩展到基础医学和生物学方面的应用;流式分选术的应用部分阐述了不同条件下流式分选的策略选择和注意事项,同时还介绍了
本书是浙江大学盛骤等编的《概率论与数理统计》(第五版)的配套学习辅导书,全书按照主教材的要求和章节顺序进行编排,与主教材习题一致。本书对教材的全部300多道题目都给出了解答,少数题目是一题多解,有些作了题目分析、解题思路分析和解答方法归纳,并指出易犯的错误,究其原因,澄清不正确的想法。通过本书的学习,可使读者提高分析问题和解题的能力,加深对基本内容的理解和掌握。 本书可作为理工科和其他非数学类专业的学生学习概率论与数理统计的参考书。
胡盘新、汤毓骏、钟季康主编的这本《普通物理 学 第七版 学习指导》是与程守洙、江之永主编,胡盘新等修订的《普通物理学》(第七版)相配套的同步学习指导书,旨在帮助读者正确掌握教材中所阐述 的基本知识、基本概念、基本规律和基本方法,使读者在学习过程中掌握学习主动权。 本书按照主教材的章节顺序编排,各章由 学习要求 、 知识框图 、 内容导读 、 解题指导 、 自我检测 和 问题讨论 六个部分组成。 本书由主教材的编者亲自撰写,把握要点 ,阐述透彻、简明扼要,而且由浅入深,便于掌握。 本书不仅适用于使用程守洙、江之永主编的《普通物理学》(第七版)的读者作为学习辅导用书,对授课教师也有参考价值。本书可作为高等学校非物理 类专业学生学习大学物理课程的辅导书或自学参考书。
本书由中科院计算所、软件所的专家学者倾心写就,以 图像风格迁移 应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从通用逐步走向专用的过程,第7章介绍深度学习处理器的体系结构应当如何应对大模型处理中的计算、访存、通信瓶颈,第8章介绍基于BCL语言的高性能算子开发优化实践,第9章介绍面向大模型的计算系统并以BLOOM作为驱动范例。本书适合作为高等院校相关专业的教材,也适合人工智能领域的科研人员参考。
本书是数学专业和相关专业微分几何课程的教学参考书,也是与作者编著的普通高等教育 十五 *规划教材《微分几何》(北京大学出版社,2006年)相配套的教学辅助参考书。本书是作者在北京大学长期从事微分几何课程教学经验的积累,反映了微分几何学科从外在理论到内在理论的发展趋势,在方法上使用了向量分析、活动标架和外微分等各种工具,与同类教学辅助参考书相比较,本书内容的选择是独创的,填补了有关出版物的空白。 本书内容包括:三维欧氏空间中的曲线论和曲面论、内蕴微分几何的要点复述、例题详解、习题汇编、解法提示或答案,其中 例题详解 为选修微分几何课程的学生提供了解题的范例, 要点复述 提供了本课程的复习要点,同时 习题汇编 提供了众多的练习题。本书对于学生学习微分几何课程有帮助,对于教师备课微分几何课程有参考价
本书与同济大学数学科学学院编写的《高等数学》(第八版)相配套,由同济大学数学科学学院的教师按照《高等数学》(第八版)的章节顺序编写而成。 本书的编排与教学需求保持同步,每节(或相关的几节)包括内容要点、教学基本要求、释疑解难、例题增补、习题选解等栏目。习题选解对教材中较难并具有典型性的约三分之一总量的习题作出简要解答,既给学生以参考,又留有自我发挥的余地。每章末还编写了该章总习题选解;并以数字资源的形式设置了自测题,供读者自行检测。 本书主要面向使用该教材的学生,并可供使用该教材的教师作教学参考;同时又具有相对的独立性,可作为工科和其他非数学类专业学生学习高等数学课程的参考书。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书为中国科学院研究生院生态学专业研究生教材。按照生态学从微观到宏观发展的层次,分述分子生态学、生理生态学、种群生态学、群落生态学、生态系统生态学、景观生态学、系统生态学和应用生态学。简要阐明生态学的基本原理,介绍生态学研究的基本方法,系统论述国内外最新研究进展,指出生态学未来发展方向。本书始终贯穿理论与方法结合,基础与前沿并重,着眼于提高分析问题与解决问题的能力。 各章包括学习要点、基本概念、正文、思考题和参考文献5个部分。书末收录中国科学院研究生院生态学课程考试试题。
.
本丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些著名数学家的历史功绩和优秀品质等内容,适于包括中学生在内的读者阅读。 本书是一部统计学的科普著作。第一章简要介绍数理统计学发展史和统计学的基础知识。第二章通过用观测数据作出统计推断的例子,讲述如何用统计方法挖掘无序的观测数据背后隐藏的有序机制。这些例子包括统计平均的陷阱、电子元件平均寿命的估计、孟德尔豌豆杂交实验、患色盲症与性别是否相互独立等。
本书基于R软件系统介绍回归分析的理论和方法,包括一元线性回归模型与多元线性回归模型的参数估计理论和方法以及自变量选择,影响点和异常点的识别及处理,异方差性诊断和自相关性问题及处理,多重共线性问题及处理,多元线性回归模型的有偏估计,非线性回归模型和含定性变量的回归模型的参数估计理论、方法及算法,广义线性回归模型和缺失数据模型的统计推断等。此外,还收集了大量的实际例子,并配有相应的R程序来介绍这些回归分析方法在社会学、经济学、教育学和心理学等领域的具体应用。
本书是分析领域内的一部经典著作.主要内容包括:抽象积分、正博雷尔测度、Lp 空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、Hp 空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等.另外,书中还附有大量设计巧妙的习题. 本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材.
本书是华东理工大学有机化学教研组编写的《有机化学》(第三版)的学习参考书。全书按照《有机化学》(第三版)的章次编写,每章包括三部分内容:本章知识点、例题解析、习题参考答案。其中例题解析根据考试的题型编写,便于学生在学习过程中及时熟悉考题的形式。本书的二维码中附有近年有机化学考试题及参考答案,方便学生在考前做自我测试。
本书是为大学数学专业本科生编写的一般拓扑学教材,以收敛和连续两个基本概念为脉络,讲解一般拓扑学中最为基本的概念和结果,内容包括度量空间、紧空间、连通空间、度量化定理、Stone-Cech紧化、函数空间等。本书取材精炼,注重公理化方法对现代数学的影响,强调空间性质与映射性质之间的联系,并配有大量习题。
本书是在《物理学简明教程学习辅导》的基础上修订而成的。 本书与马文蔚等编写的《物理学简明教程》(第二版)配套。本书各章节顺序与主教材一致,每章分基本要求、学习指导、问题分析与讨论和习题分析与解答四个部分。每章均提出教学要求;归纳和总结知识要点,并补充典型例题,进行分析、讨论和解答;分析和讨论主教材中每章的问题;对主教材中每章的习题给出简明分析和解答。全书紧扣主教材,从教学实际出发,注重实用性。 本书适合以《物理学简明教程》(第二版)为教材的师生作为教学和学习的辅助用书,也可供其他读者自学时使用。