本书是一本可以激发读者数学兴趣,启迪数学思维,开阔知识眼界的妙趣横生的数学科普读物。 全书共五章,从不同角度诠释数学之美。 第一章:生活中美丽的数学 从日常点滴中窥见数学之美。从投资理财到项目管理,从密码学到代数几何,数学已渗透到我们生活中的每一个角落。 第二章:上帝的骰子 排列组合与概率 用生动有趣的案例带你领略概率的巧思与随机的神奇。 第三章:囚徒的困局 逻辑推理、决策、斗争与对策 带你体验推理、决策、博弈的乐趣,做一把福尔摩斯 第四章:中外古代趣题拾零 追寻古圣先贤的足迹,带你体会中外数学的智慧 第五章:当数学遇到计算机 从计算机的二进制世界到数码相片,从5G通讯到区块链的实现,本章带你从高科技中发现数学的智慧之光。
无穷大到底有多大?空间有内外之分吗?原子是如何构成的?三维世界的我们如何想象四维空间?生物与非生物的界限在哪里? 《从一到无穷大》以生动有趣的语言,深入浅出地介绍了数学、物理学、生物学及天文学的基本概念与前沿知识。从基础的数学概念如大数与无穷大,到相对论、量子力学等深奥理论,再到生物遗传、宇宙结构等宏大议题,通过一个个故事串联,将复杂的科学概念变得易于理解,让我们在享受阅读乐趣的同时,拓宽科学视野,领略自然科学的魅力。无论是对科学感兴趣的初学者还是有一定科学基础的读者,都能从中受益匪浅。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的*进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而*美的数学(the best mathematics)则如文学 它将故事栩
联合国教科文组织卡林伽科普奖得主乔治 伽莫夫代表作 风靡全球数十年,被译成10多种语言,畅销70余年 影响数代人的世界公认科普经典,大众爱看的自然科普入门书
《从一到无穷大》是当今世界上罕见的、横跨多个学科的科普经典巨著,作者荣获得卡林伽科普奖。本书图文并茂,由爱因斯坦亲笔推荐,是自然科学入门经典作品。 《从一到无穷大》围绕20世纪以来科学的新发现展开,由浅入深地讲述了数字游戏、可以弯曲的四维空间和时间、爱因斯坦的相对论、组成人类微观世界的物质 基本粒子与基因、生命的遗传规律、宏观世界 宇宙和星系,等等。伽莫夫在书中融入了自身见解,呈现各个学科的思维方式与科学方法,使庞大的知识和理论自成体系。书中128副作者亲手绘制的插图与文字相辅相成,使理性思考与感性认知相辅相成,通俗易懂。 《从一到无穷大》如同一部流动的科学史诗,一个个轰动世界的实验,凝结了科学家们的心血,多个学科丰富的知识和理论,尽情地展现科学之美。海盗的宝藏、摆满64 格棋盘的麦子
本书整理自杨振宁1959年的演讲稿,以平实的语言向读者介绍了物理学研究的本质问题:组成宇宙的 砖块 基本粒子 是什么,以及它们之间如何发生相互作用。本书按照历史发展顺序,叙述了粒子物理学领域早期的重要发现与不为人知的详细过程,并着重介绍了宇称守恒问题。
量子计算机之所以被冠以 终极计算机 称号,是因为它是技术层面带有决定性意义的一次飞跃,将为我们的经济、社会以及生活方式开创一个全新的时代。 正因为意识到这场革命即将带来深刻影响,所以世界上许多领头雁公司都选择在这项新技术上斥以巨资,谷歌、微软、英特尔、IBM、里格蒂计算公司和霍尼韦尔等都在开发量子计算原型机。 资本竞争似乎比技术竞争更激烈,华尔街对量子计算领域的初创公司给予了很高估值。各国政府也纷纷投入资金,加速量子技术方面的研究。汽车制造商、医学研究人员和咨询公司都押注于量子计算,以设计更高效的车辆,创造拯救生命的新药,并简化业务。但这仅仅是开始。 人类面临的任何问题都有可能被量子计算机解决。加来道雄博士毕生致力于量子理论研究,他以其标志性的清晰和热情,讲述了这个令人兴奋的科学前沿
他们来自不同的研究领域 数学、物理学、生命科学、天文学 他们来自不同的国家 中国、英国、美国 他们成长于不同的年代,家庭背景各异,所受教育和职业生涯也各不相同。 但他们有着共同的特点:从小对世界抱有无限的好奇心、求知欲和想象力,对科学怀有极致的热爱。 《成为科学家》讲述了屠呦呦、钟南山、张益唐、王贻芳、常进、鲍哲南、颜宁、许晨阳、莉丽莎 兰道尔、马克 麦考林这十位现在国际知名科学家的 人物故事 ,真实呈现了他们丰富多样的成长经历、,以及对科学启蒙的认知过程和探索未知领域的艰难与突破。书中的科学家不再是千篇一律的形象:屠呦呦 不喜欢场面事儿,只想研究青蒿素 ;钟南山说 我们要讲真话,对得起病人 ;发明人造皮肤的鲍哲南觉得 工作对我是一种追求,但家庭对我更重要 ;生物学家颜宁告诉学生 有能
傅里叶级数理论的产生是数学发展史上的重大事件。它的产生彻底平息了关于弦振动问题的争论,同时引领数学分析走向严格化。傅里叶级数理论经历近两百年的发展,已经成为现代数学的核心研究领域之一。本书主要运用历史研究法、比较法、文献法等方法对傅里叶级数理论的起源进行了考察,从音乐、物理学、数学以及科学发展的趋势等众多层面探讨了傅里叶级数理论的起源,探讨了傅里叶能够成功建立其级数理论的原因,从理论物理(包括应用数学)及纯粹数学两个方面考察了傅里叶级数理论产生的影响。
《中国代数故事》是著名数学教育家许莼舫巨著,本书以故事的形式讲解数学的基本概念和定理,风趣幽默、深入浅出,培养中小学生学习数学的兴趣;有针对性地提出解决问题的方法,教中小学生掌握正确的解题思路;在循循善诱中拓展中小学生的数学思维,为中小学生学好数学打下坚实的基础。如:正负数计算、一元任何次方程和多元任何次方程组的解法、二项式乘方的性质、级数肯插值法的研究,以及不定问题的解法等。 所有解法都是中国古代数学上的伟大成就,在世界数学史上有着光荣地位。无异于是站在巨人的肩膀上,思维大不同!《中国代数故事》是青少年探索数学知识,拓展数学思维的好帮手。
本书是丛书 天文望远镜史话 中的本,详细介绍了经典的天文光学望远镜的全部发展过程。从古代天文仪器到光学天文望远镜的诞生,从折射光学望远镜到反射光学望远镜的发展,从口径几厘米的光学望远镜一直发展到直径5米的海尔经典光学望远镜。作者分享了望远镜发明和建造过程中鲜为人知的小故事以及他本人的亲身经历。全书内容通俗易懂,文风轻松诙谐,配有大量精美插图,趣味性与可读性并重,特别易于激发青少年读者的兴趣,更有助于读者体会人类在科学探索过程中的创造和传承,感受科学家求真务实、勇于创新的科学精神。
《几何计算》是著名数学教育家许莼舫巨著,本书详细介绍了几何计算的基础知识,重在让读者对几何量有完善的认知。强调打好理论基础,用风趣的语言将重要的定理解说得简单易懂。对几何知识进行了分类系统的解释,例举有趣的故事作为示范,启发读者思考,锻炼运用定理的能力。为了让读者深入了解几何知识设置了实际应用章节,将几何中的各种计算方法运用到实际生活中,解决生活中的问题,实现了理论与实践的完美结合。 《几何计算》是青少年探索数学知识,拓展数学思维的好帮手。
本书是丛书 天文望远镜史话 中的第二本,详细介绍现代光学天文望远镜的发展进程。地平结构的使用为建设更大口径光学望远镜提供了可能性;薄镜面、蜂窝镜面的使用使望远镜的重量和造价不断降低;主动光学和自适应光学的引进、拼合镜面的使用、正方形圆顶室的应用,使光学天文望远镜的口径达到8米至10米。利用拼合镜面技术进行的22米、25米和39米的巨型光学望远镜的设计也已经十分完善。人类进入了巨型望远镜时代。作者分享了望远镜发明和建造过程中鲜为人知的小故事以及他本人的亲身经历。书中还涉及相关的天文学前沿和热点问题,内容通俗易懂,文风轻松诙谐,配有大量精美插图,趣味性与可读性并重,特别易于激发青少年读者的兴趣,更有助于读者体会人类在科学探索过程中的创造和传承,感受科学家求真务实、勇于创新的科学精神。
你知道吗?大多数人死亡和痛苦的根本原因不是癌症,也不是心脏病,而是衰老。随着人年龄的增长,一系列的生物变化会让我们长皱纹、头发变白,也会导致痴呆、心脏病和其他疾病。 然而,治疗衰老听起来就像科幻小说或者炼仙丹一样不靠谱,大多数人对衰老的科学研究也不甚了解。实际上,近年来关于衰老的科学研究已经取得了非常惊人的进展,在可预见的未来,治疗衰老的相关药物或者方法进入公众视野、投入市场将不再是梦想。 不老 已经不仅是一种理论上的可能性,关于衰老的生物学研究即将为全人类描绘一幅不一样的未来图景。 这本书介绍了关于衰老的前沿科学研究,归纳了衰老的十大基本特征,并总结了治愈衰老的四种疗法,帮助我们了解如果用科学方法达到老而不衰,以及如何活得更久但不生病。
数百年前,达 芬奇写道: 人类任何的知识,如果不使用力学论据体系,都无法成为真理科学之一。 这是许多年前的真理,直到今天依然被证实是准确的。 本书是世界著名科普作家、趣味科学奠基人别莱利曼*经典的作品之一。在本书中,作者不仅力求向读者讲述物理学中力学的新知识,帮助读者了解他已经知道的东西,还希望加深读者对力学重要理论的认知并对这些知识产生更浓厚的兴趣,让读者学会如何在各个方面对已掌握的知识做到活学活用。为了达到这个目的,书中推出了关于力学的大量谜题以及引人入胜的故事和妙趣横生的问题,当然还有各种奇思妙想,而这些内容大都来源于我们生活中每天都会发生的事件,也有的取材于著名的科学幻想作品中虚构的故事。 通过本书,读者不仅可以轻轻松松爱上力学这一学科,还能激活无穷的科学想象力,掌握按照
《什么是数学:对思想和方法的基本研究(第4版)》是世界著名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读《什么是数学:对思想和方法的基本研究(第4版)》。 特别对中学数学教师、大学生和高中生,《什么是数学:对思想和方法的基本研究(第4版)》都是一本极好的参考书。
从古到今,人们经常会深陷占卜带来的虚幻的错觉,低估巧合事件的发生概率因而以为有神秘力量在起作用,将事物复杂的发展规律简单化、线性化,进而做出与实际情况相去甚远的预测。 数学可以在非线性发展的世界中充当向导的作用。有了数学的帮助,我们就可以通过理性和逻辑思考,避免直觉所犯的一系列错误。但即使是数学,在处理这个复杂世界的各种问题时,也做不到面面俱到,游刃有余。 这本书介绍了本福德定律、贝叶斯定理、博弈论、正反馈回路等数学知识,帮助我们戳穿流传多年的民间经验法则,辨别常见的认知错误,发现毫无意义的错误预测。作者告诉我们,预测可能发生各种各样的错误,没有什么永恒的法则能保证我们的预测百分之百不出错。但同时作者也提供了一些有用的技巧和工具,以便你在实际场景中使用它们,为你的未来做出决定
科学家头脑里的那些灵感,都是怎么来的? 在处理*抽象的数学问题时,他们在想些什么呢? 《质数的阴谋》给出的一个答案是: 灵感会不期而遇 。一位研究人员想到了公共汽车站的量子混沌系统;另一个人在朋友的后院突然发现了一条证明数论定理的途径;一个统计学家有一个 浴室沉陷顿悟 ,发现了解决高斯相关不等式的关键。 这是一本汇集了精彩的数学探索故事的科普读物,收录了知名数理杂志《量子》(Quanta)的37篇文章,汇集了在理解我们的数学世界方面新突破的权威成果。它通过严肃地对待数学,与难懂的概念进行斗争,并以一种能反映我们对世界和我们自身固有的好奇心的方式来解释数学,享受数学带给生活的红利。 这些故事表明, 灵感是随意的 ,揭示了令人惊讶的解决方案和令人兴奋的发现。在这本书里,我们可以看到智慧的头脑们进行数学探
本书是丛书 天文望远镜史话 中的第三本,详细介绍射电天文望远镜的发展。射电望远镜的发展开始于20世纪30年代,包括长波段的米波天文望远镜以及频率较高的微波、毫米波、亚毫米波和太赫兹天文望远镜。介绍了前沿的甚大阵、阿塔卡玛大型毫米/亚毫米波阵、中国的500米口径球面射电望远镜等。作者分享了望远镜发明和建造过程中鲜为人知的小故事以及他本人的亲身经历。全书内容通俗易懂,文风轻松诙谐,配有大量精美插图,趣味性与可读性并重,特别易于激发青少年读者的兴趣,更有助于读者体会人类在科学探索过程中的创造和传承,感受科学家求真务实、勇于创新的科学精神。
本书是南京创新性科普图书项目 天文望远镜史话 的本,介绍了从中国古代的天文观测仪器,到经典光学望远镜的诞生,讲述了经典天文观测时代观测手段的变迁历史和如今的经典天文望远镜,作者分享了望远镜发明和建造过程中鲜为人知的小故事以及他本人的亲身经历。书中还涉及相关的天文学前沿和热点问题,内容通俗易懂,文风轻松诙谐,配有大量精美插图,趣味性与可读性并重,特别易于激发青少年读者的兴趣,更有助于读者体会人类在科学探索过程中的创造和传承,感受科学家求真务实、勇于创新的科学精神。
《趣味代数学》是世界著名科普作家、趣味科学奠基人雅科夫 伊西达洛维奇 别莱利曼经典作品之一,在书中别莱利曼没有选择呆板又枯燥的教学方式,而是用简洁且准确的文字,将代数学知识与生活中有趣的问题结合起来,拉近读者与代数学的距离,使其知道代数学在日常生活中意想不到的妙用。同时,他选取了许多知识与趣味相融合的题目,让读者在学习代数学的过程中不会感到沉闷,而是充满了乐趣。 正如作者所说: 《趣味代数学》不仅是要帮助读者理清、重拾和巩固那些零散和薄弱的知识点,更主要的还是培养读者对代数学兴趣,激发读者在教学的基础上自主地扩大知识面。为了使内容更具吸引力和趣味性,我在本书中了采用各种方法:设置情景奇特的问题来引发读者的好奇心,穿插有趣的数学史,介绍代数学在实际生活中让人意想不到的应用等等。
引力波究竟是什么?引力波探测的意义与前景何在?什么样的物理过程会发射引力波?爱因斯坦在引力波研究上栽过哪些跟斗?宇宙中* 亮 的爆炸为什么是 黑暗 的?中子星双星的合并为什么是黄金的*可能来源?LIGO之前的引力波探测为什么不成功? LIGO又为什么成功?我们如何从比原子核线度还小得多的扰动中推知出一对巨大黑洞的合并?在本书中,我们将沿着长长的历史足迹,用文字和数学两种语言,从理论和探测两个方面,来讲述引力波的故事,并对上述问题 以及许许多多其他问题 进行探究。
《数学简史(第四版)》精心叙述历史的小书初版是在1948年,到现在已经是第四版了。 《数学简史(第四版)》从史上现存*份文件开始直至20世纪中叶,讲述了数学各个领域里的发展主流,无数的学生、研究人员、历史学者、专家 总之一句话,每一个对数学有兴趣的人 都会觉得《数学简史(第四版)》引人入胜、回味无穷。 《数学简史(第四版)》作者D.J.斯特罗伊克从古代近东开始,沿着在埃及、巴比伦、中国和阿拉伯发展出的思想和技术,探究诸如埃及的《莱茵德纸草书》、中国的《算经十书》、印度的《悉昙多》等手稿,再从爱奥尼亚理性主义直到君士坦丁堡失陷来看待希腊和罗马的发展,谈到中世纪欧洲的思想和文艺复兴潮流,分析17世纪和18世纪的贡献,对19世纪的观念做出了富有启发性的阐述。他没有遗漏任何数学史上的重要人物 欧
们来自不同的研究领域——数学、物理学、生命科学、天文学……他们来自不同的国家——中国、英国、美国……他们成长于不同的年代,家庭背景各异,所受教育和职业生涯也各不相同。但他们有着共同的特点:从小对世界抱有好奇心、求知欲和想象力,对科学怀有热爱。《成为科学家》讲述了屠呦呦、钟南山、张益唐、王贻芳、常进、鲍哲南、颜宁、许晨阳、莉丽莎·兰道尔、马克·麦考林这十位现在国际知名科学家的“人物故事”。真实呈现了他们丰富多样的成长经历、,以及对科学启蒙的认知过程和探索未知领域的艰难与突破。书中的科学家不再是千篇一律的形象:屠呦呦“不喜欢场面事儿,只想研究青蒿素”;钟南山说“我们要讲真话,对得起病人”;发明人造皮肤的鲍哲南觉得“工作对我是一种追求,但家庭对我更重要”;生物科学家颜宁告诉学生“有