★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
一个图形怎么才能有多于一个但又少于两个面? 一个高度精确的医药测试,有可能更容易得出错误的结论吗? 如果只能看到销售数据的*位数字,你怎么才能知道你的会计是不是在说谎? 在我们的生活中,数学无处不在,真实、有趣而美妙。当你开始用数学的眼光去观察世界,生活或许会变得更加简单而确定,你准备好了吗? 爱德华?沙伊纳曼, 沙伊纳曼定理 的命名人,知名的数学家和教育家,会在这本书中帮我们发现和解答身边有趣的数学问题,带领我们走进那个关于数字、图形和不确定性的美丽新世界。
本书是一本可以激发读者数学兴趣,启迪数学思维,开阔知识眼界的妙趣横生的数学科普读物。 全书共五章,从不同角度诠释数学之美。 第一章:生活中美丽的数学 从日常点滴中窥见数学之美。从投资理财到项目管理,从密码学到代数几何,数学已渗透到我们生活中的每一个角落。 第二章:上帝的骰子 排列组合与概率 用生动有趣的案例带你领略概率的巧思与随机的神奇。 第三章:囚徒的困局 逻辑推理、决策、斗争与对策 带你体验推理、决策、博弈的乐趣,做一把福尔摩斯 第四章:中外古代趣题拾零 追寻古圣先贤的足迹,带你体会中外数学的智慧 第五章:当数学遇到计算机 从计算机的二进制世界到数码相片,从5G通讯到区块链的实现,本章带你从高科技中发现数学的智慧之光。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学就像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的 理所应当 和 显而易见 将被摒弃,现实背后隐藏的真相将带来巨大的启发。这就是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
《数学史(第三版)》由国际科学史研究院院士卡尔 B.博耶和哈佛大学数学与科学史博士尤塔 C.默茨巴赫所著,博耶和默茨巴赫按照时间、空间和学科演化三个维度,把数学几千年的发展浓缩为这本引人入胜的编年史。本书涵盖了数学发展的整个历程,可以对数学获得一个完整的认知。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但作者并没有忽视中国文明、印度文明和阿拉伯文明的贡献。毫无疑问,这本书是一部经典的关于数学及创造这门学科的 数学家们的单卷本历史著作。进入21世纪,数学高速发展,很多学科获得突破性的进展,本书的第三版同时做了更新,使得数学史更加完整。特别值得一提的是,本书视野开阔,并没有局限于西方视角,对于古代中国的数学发展也有较为详细的介
这是一本充满欢乐的数学书。作者本 奥尔林在做数学老师的十几年里发现,大多数学校都把数学这门课教得乏味透顶,他自己开始也是这样。有一天他在解释一道题时画了一条滑稽的小狗,惹得学生们哄堂大笑,这让他豁然开朗:孩子们看到一向聪明、专业的老师画的画这么 烂 ,突然觉得数学不再高高在上,而是变得可亲起来。从此,他的数学课充满了欢声笑语,学生有了飞跃的进步,并且获得了数学学习的秘籍 理解。 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因
微积分是人类历史上的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们更应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。 在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的 钥匙 打开了宇宙奥秘之 锁 ?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响? 在《微积分的力量》书中,应用数学家兼 导游 斯托加茨将用一种 讲故事 和 看展览 的方式为你一一
无穷大到底有多大?空间有内外之分吗?原子是如何构成的?三维世界的我们如何想象四维空间?生物与非生物的界限在哪里? 《从一到无穷大》以生动有趣的语言,深入浅出地介绍了数学、物理学、生物学及天文学的基本概念与前沿知识。从基础的数学概念如大数与无穷大,到相对论、量子力学等深奥理论,再到生物遗传、宇宙结构等宏大议题,通过一个个故事串联,将复杂的科学概念变得易于理解,让我们在享受阅读乐趣的同时,拓宽科学视野,领略自然科学的魅力。无论是对科学感兴趣的初学者还是有一定科学基础的读者,都能从中受益匪浅。
本书是享誉世界的科普经典著作,不仅影响了众多科研和科普工作者,更是将很多 门外汉 领进了自然科学的大门。 全书用数学的发展和公式的演进作为线索,从数学的诞生讲到生命和宇宙的诞生,融入了物理学、生物学甚至哲学等科学发展的诸多领域,不仅为读者描绘一幅全面的宇宙图景,更是向读者传递了科学的思维方法、科学的认识角度、科学的世界观。
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
《自然哲学的数学原理》书中牛顿的成就多到数不胜数,明显的例子就是牛顿运动定律,这一定律至今仍然传授于世界各地。牛顿为微积分提供了概念基础,尽管他在书中没有明确使用微积分,但精通数学的读者可能会猜测牛顿正在使用一种新技术。至关重要的是,牛顿从他的平方反比定律推导出了开普勒三定律。他证明了开普勒方程没有代数解,并提供了计算方法。在牛顿这部划时代伟大的著作中,读者更能欣赏到他在物理学之外的卓越成就。牛顿在本书中的只言片语,如今也将被成千上万的作者呈现在无数论文中,这是科学的胜利。牛顿不仅解决了长期以来如何求证行星轨道的难题,而且还用他的理论解释了很长时间里独立且无法解释的现象:潮汐、岁差、月球的轨道、单摆模型和彗星的出现。在本书中,牛顿证明了现代科学的标志是什么 将尽可能多种不同
莱昂哈德 欧拉的多面体公式 V-E F=2 被数学家们誉为第二优美的数学定理。从足球和宝石到美妙的穹顶建筑,这一公式描述了许多物体的结构。本书围绕欧拉多面体公式及其数学思想,从古希腊数学讲起,直到当代拓扑学的前沿研究,介绍了这一公式的发现及其对拓扑学研究的深远影响。书中包括丰富的插图与例子,展示了多面体公式的许多优雅而出人意料的应用,例如说明为什么地球上总有一些无风的地方,如何通过数树来测量林地的面积,以及为任何地图涂色需要多少支蜡笔,等等。在书中,读者将看到一群质疑、完善多面体公式和为这个非凡定理的发展做出贡献的杰出数学家,在数学史的长河中,他们都多面体的研究和拓扑学的发展做出了自己的贡献。 本书适合对数学,尤其是拓扑学及数学史感兴趣的读者阅读。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的*进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而*美的数学(the best mathematics)则如文学 它将故事栩
飞毛腿为什么追不上乌龟? 无穷世界里部分大于整体吗? 理发师到底给不给自己剪头发呢? 2为什么不是有理数? 从一个个问题中,科学家开始探索奇妙的数学世界 用于测量金字塔的高度,预测彗星轨迹,探索大脑结构、走进量子世界 数学,正是物理、化学、生物、天文等学科的基础,人类的每一次重大进步的背后都离不开数学。 本书通过讲述影响世界的40个经典数学问题,多角度展现了人类在探索过程中闪耀的智慧光芒,创造性梳理了数学的发展脉络,帮你发现一个妙趣横生、精彩绝伦的数学世界,让你学会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界。
本书将两千多年的数学发展历程融为十二章内容,每章都包含了三个基本组成部分,即历史背景、人物传记以及在这些 数学杰作 中所表现出的创造性。作者精心挑选了一些杰出的数学家及其所创造的伟大定理,如欧几里得、阿基米德、牛顿和欧拉。而这一个个伟大的定理,不仅串起了历史的年轮,更是串起了数学这门学科所涵盖的各个深邃而不乏实用性的领域。当然,这不是一本典型的数学教材,而是一本大众读物,它让热爱数学的人体会到绝处逢生的喜悦,让讨厌数学的人从此爱上数学。
《中国科普大奖图书典藏书系》囊括新中国成立以来,著名科学、科幻作家经典获奖作品,展现科学之真、善、美,传播知识、激发兴趣、启迪智慧!本书是丛书系列之《数学百草园》。本书分数学人物、文史建筑体育社科、迷人的数与数的变换、数学魔术与戏法、数学之美、巧解妙题提高智力、数学广角镜七个模块。
《神奇的数学:牛津教授给青少年的讲座》是作者在一系列针对青少年的数学普及讲座内容基础上汇集整理的一本数学科普书,介绍了一些数学中很有神秘色彩的知识,内容浅显易懂,语言生动活泼,很容易激发读者尤其是青少年读者了解数学的兴趣。 《神奇的数学:牛津教授给青少年的讲座》适合所有对数学知识感兴趣的读者。
本书利用数学建模方法讨论了人类社会和自然界中的33个话题,既包括对经典话题的全新阐释,也包含对若干全新话题的原创研磨,不仅解答了大众对于数学的常见疑问: 数学有什么用? 更是以高中知识为主要工具、以数学建模为主要载体、以中学生能够理解的方式,展现了数学研究的基本过程和思维方式。33个话题充分体现了数学与生活的密切联系,讲解了数学建模如何有效地解决跨学科问题,如何为生活中的现实需求建立合理有效的模型,如何在设计制造、生物医学、机器学习,甚至在解决社会问题方面大显身手。作者力求将抽象且严密的数学阐述得通透而有趣,凸显数学的 形式之美 逻辑之妙 与 大道至简 。本书是为高中生、大学低年级本科生和爱好数学的大众读者开启的一场妙趣横生的数学思维之旅。
数学是理解和探索世界的工具,无论是学生、工程师还是科学家,都有能力也应该学会数学建模的方法和思想,学会如何用正确的思维方式搭建解答问题的阶梯。这本书旨在将数学作为一门语言、一种方法来引领读者学习数学。读者也将看到如何理解、传承并调用现代科学的知识、传统和范式。数学建模不仅是数学学习和研究的过程,更是我们认识世界、理解生活的方法之一,而在实践数学建模的过程中,我们将深刻感受到数学的趣味性、严谨性和解决问题的无穷威力,正如亨利?庞加莱的名言所讲,这将是一次面向心智的雅致统一的追求。
统计学之所以被滥用、误用,其实是因为它太有用,在某种程度上,可以说它改变了我们处理问题的方式。 这是一部统计学的史诗。一百多年来,统计学从无到有,以至于蔚为壮观。一部统计学的发展史,就是一部不断革新现有科学体系的历史。本书深入浅出地描绘了这一历程,为读者奉献了一场思想的饕餮盛宴。 这是一部关于叱咤风云的统计学学霸的传奇故事书。回望那段波澜壮阔的时代,一张张脸孔如流水般掠过。在英国剑桥的某个午后,有位女士声称,把茶加到牛奶里,和把牛奶加到茶里,两种方法调出来的下午茶喝起来味道不同。在座的科学家都对她的说法嗤之以鼻,但有位来访的瘦小绅士,R. A. 费希尔,提议要用科学的方法,来检验这位女士的假设 本书以这位喝下午茶的英国女士为起点,带领读者一一回顾 统计 这门应用范围最广的科学,了解若干重