《华为数据之道》 《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在优选170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细
阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到最新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及最佳实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
Python是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3篇。第1篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2篇介绍预测算法,该部分包含多元回归分析、复杂
商业分析有用吗?当然有用!商业分析是行走职场、创业启航的一项推荐技能。作者结合自己多年的工作经验,用生动的语言介绍如何用数据分析解决商业问题。本书分为6篇,共17章,其中第1篇是概念篇,讲述商业分析的基本概念;第2篇是基础篇,讲述如何用基础的分析方法评估企业经营状况;第3篇是进阶篇,讲述如何构建分析体系解决较复杂的问题;第4篇是高阶篇,讲述如何应对复杂的商业难题;第5篇是基础实践篇,通过案例讲述如何解决更复杂的商业问题;第6篇是高阶实践篇,通过案例讲述如何解决商业分析中的疑难杂症。本书的讲解思路是层层递进的,从简单场景到复杂场景,从基础的方法到复杂的方法。因此,无论读者是否有数据分析基础和经验,都建议从头开始阅读,这样可以一步步提升认知,更快地掌握商业分析的方法。
在大数据时代,我们并不缺少数据,缺少的是利用数据分析的思维和工具去解决实际问题的能力。数据化分析是运用恰当的方法和工具,对数据进行科学、有效的分析,从而提出有理有据、具有可操作性的建议,以解决现实中的难题。本书主要介绍了数据分析的9 种思维、7 种工具、学习方法、基本方法、展现方法、制作数据分析报告的方法,以及数据分析的思维模型。本书适合所有对数据分析感兴趣的读者阅读,特别是在工作或生活中需要经常跟数据接触的人,如数据分析师、产品经理、运营人员、管理人员、财务人员等。
《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》由李杨著
对于企业而言,大数据的重要性不言而喻,如何构建、实施和应用大数据系统是很复杂的。 本书将为大家全面而深入地介绍Hadoop、Spark和NoSQL平台的构建,深入浅出地讲解Hadoop、Spark和NoSQL的基础知识、架构方案与实战技巧等。通过阅读本书,读者可以对大数据平台架构有一个明确、清晰的认识,掌握Hadoop、Spark、NoSQL平台的使用技巧,从而搭建一个安全可靠的大数据集群平台,来满足企业的实际需求。 本书共15章,可分为五大部分。第一部分(第1章)为大数据平台架构概述,讲述大数据平台的基本概念与实际应用;第二部分(第2章?第6章)主要讲解Hadoop的基本使用方法,以及Hadoop生态圈的其他组件;第三部分(第7章)主要介绍NoSQL;第四部分(第8章?第10章)主要介绍Spark生态圈与Spark实战案例;第五部分(第11章?第15章)讲解如何构建大数据平台,阐述大数据平台的
无论是审计师还是会计师,在工作中都会遇到如何获取数据、分析数据的问题,甚至有时想制作一些自动化的工具或利用编程技巧来辅助完成重复性的工作。本书正是从审计师、会计师的实际工作场景出发,讲解IT审计的学习技巧、SQL基础与实战技巧、Python基础与Python实战技巧,以及数据可视化技巧等。
本书提供了学习大数据技术及架构的一站式解决方案,覆盖了大数据生态圈中的完整技术体系,包括数据采集、数据存储、分布式资源管理、数据计算、数据分析、任务调度、数据检索、大数据底层基础技术和大数据集群安装与管理。 本书还介绍了多个企业级大数据应用案例(包括海量数据采集、“双十一”数据大屏、海量数据全文搜索系统等)和大数据平台架构案例(包括离线数据仓库架构、实时数据仓库架构、批流一体化数据仓库架构、数据中台架构、直播大数据平台架构、电商大数据平台架构等),可以帮助读者从全局角度理解大数据。 在本书中,技术内容基本上都是从零讲起的,结合原理和架构,以“图解+实战”的形式帮助读者轻松理解复杂的知识。 本书适合对大数据感兴趣的开发人员。无论读者是否接触过大数据开发,只要具备一定的Java开发
在数字中国这一国家战略的牵引下,数据要素和数字化转型的研究和落地如火如荼。数据中台是企业开展数据要素相关实践和数字化转型的关键基础设施,本书在这样的时代背景下,以帮助企业“管好数据、用好数据”为宗旨,内容围绕数据中台架构与建设方法论、数据中台建设流程和内容、数据中台工程化交付、数据中台行业解决方案4个维度全面、深度展开。 本书一共17章,逻辑上分为四个部分: *第1部分数据中台建设方法与架构设计(第1~3章) 首先,从产生、定义、认知、相关概念、建设方法论、架构等方面对数据中台进行了全面介绍,帮助读者建立对数据中台的清晰认识和理解,熟悉数据中台的建设机制;然后,总结了企业数据应用成熟度评估、数据中台在各个行业的应用场景,以及数据中台的成功要素。 *第2部分数据中台建设内容与运营方法(第4~10章)
本书教你如何从基于时间的数据(如日志、客户分析和其他事件流)中获得即时、有意义的预测。在这本通俗易懂的书中,作者通过带有注释的Python代码进行全面演示,你将学习用于时间序列预测的统计和深度学习方法。通过跟随书中的实例锻炼你的技能,你很快就会准备好建立自己的准确、有洞察力的预测。
本书由国内资深MySQL专家亲自执笔,国内外多位数据库专家联袂推荐。作为国内专享一本关于InnoDB的专著,本书的第1版广受好评,第2版不仅针对近期新的MySQL 5.6对相关内容进行了全面的补充,还根据广大读者的反馈意见对第1版中存在的不足进行了完善,全书大约重写了50%的内容。本书从源代码的角度深度解析了InnoDB的体系结构、实现原理、工作机制,并给出了大量很好实践,能帮助你系统而深入地掌握InnoDB,更重要的是,它能为你设计管理高性能、高可用的数据库系统提供不错的指导。 全书一共10章,首先宏观地介绍了MySQL的体系结构和各种常见的存储引擎以及它们之间的比较;接着以InnoDB的内部实现为切入点,逐一详细讲解了InnoDB存储引擎内部的各个功能模块的实现原理,包括InnoDB存储引擎的体系结构、内存中的数据结构、基于InnoDB存储引擎的表和页的物理存
《数据库系统概念》是数据库系统方面的经典教材之一,本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,使其体系更符合国内本科数据库课程教学要求。本书第1章概述数据库系统,第一部分(包括第2~6章)讲述关系语言的基本概念,第二部分(包括第7~9章)介绍数据库设计与应用程序开发技术,第三部分(包括第10~14章)介绍数据库管理系统实现的核心技术,第四部分(包括第15~17章)介绍大数据分析、区块链数据库、高级应用开发等高级话题。 本书既可作为高等院校计算机及相关专业本科生的数据库课程教材,也可供数据库领域的技术人员参考。