本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
部分(第1~4章)为基础和背景部分,主要介绍数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的本质,以及实践中常见分析项目类型的介绍。第二部分(第6~13章)是数据分析挖掘中的具体技巧和案例分享部分,主要介绍实践中常见的分析挖掘技术的实用技巧,并对大量的实践案例进行了全程分享展示。第三部分(第5章,第14~19章)是有关数据分析师的责任、意识、思维的培养和提升的总结和探索,以及一些有效的项目质控制度和经典的方法论介绍。
本书按照数据库应用(VFP)课程标准组织编写内容,每一个模块包含教学目标、目标双向细目表、典型题解及每一个任务的相应练习。题型有填空、选择、判断、连线、填表、填图和简答。附有5套综合练习,部分题目选自近年来的高职高考题,有较强的代表性。既可作为《数据库基础及应用》教材的同步练习,也可以作为强化数据库学习的好帮手。
《大数据测评》一书介绍了大数据的概念和特征,各国大数据发展的战略、发展趋势及其标准化情况,以及对于软件测试带来的挑战。 在此基础上,《大数据测评》在面向大数据处理框架、大数据基础算法、应用系统、系统安全和隐私泄露的测评技术 等方面展开了分析和讨论。以Hadoop为主线开展大数据测试的探讨。在底层支撑框架层聚焦于单元测试和框架基准测试;在基本算法中涵盖了聚类、分类及其个性化推荐;在应用层,介绍了其性能测试中若干问题,重点阐述数据集的设计与分析。 后,《大数据测评》讨论了大数据的安全和隐私问题,突出介绍由于大数据所引发的新安全问题及其对策。 本书的读者对象是从事大数据或者软件测评的学者、软件工程研究人员、高校研究生、大数据产业人员。
本书覆盖了数据仓储构建的所有主要领域,包括数据仓储的定义和环境;数据仓储的4个类型、对数据仓储的5类共15个要求;2个方法论的总结及3个构建方法。本书给出了一个高性能的参照系统结构。基于此参照系统结构,本书系统地讨论了大量设计议题、并包括21个设计建议、8个实践建议、7个设计原则、27个通用算法和技术、12个元数据驱动的通用操作符、7个工作过程、4个范式基础及范式原则。
《数据密集型计算和模型》一书涵盖了数据密集型计算的体系结构、计算模型和编程方法,内容系统全面,着重介绍原理和方法。并配以图片,便于读者理解。 《数据密集型计算和模型》一书前半部分,重点介绍了数据密集型计算的概况,及其与高性能计算和云计算的异同、应用领域以及面临的挑战问题;巨量数据时代的计算机组织体系和技术;内存计算组织体系和技术;等等。后半部分重点介绍了几个常见的计算模型,如MapReduce模型、BSP模型和Dryad模型,并综合介绍了一些专门领域的计算模型,如All-Pairs模型等。 数据密集型计算是大数据时代的标志。《数据密集型计算和模型》一书借鉴了近年来在该领域的研究成果,有一定的创新,其出版较好地弥补了市场空白。
《城市发展的数据逻辑》通过对城市空间数据和非空间数据(如地形数据、建筑物数据、城市环境数据等)反映城市发展现状和历史的数据进行分析、挖掘,论述城市发展的规律和内在逻辑,为城市发展提供了重要的分析工具和科学依据。 《城市发展的数据逻辑》系统、全面地介绍了与城市发展有关的各种空间数据。在此基础上介绍了国内外对城市生产的研究现状,总结了目前国内外城市大数据研究的形成和发展、城市生长模型及其新方法,并借助一些典型案例,介绍应用城市生长技术的流程与方法。《城市发展的数据逻辑》还介绍了GIS、RS、GPS等新技术在城市发展及城市规划中的应用,以及如何使用新的信息技术方法揭示城市发展过程中诸如道路交通、城市建筑、公共设施等城市因子与城市发展的内生联系。 《城市发展的数据逻辑》的读者对象是城市发展领域
《汇计划在行动》全面介绍了《上海市推进大数据研究与发展三年行动计划( 2013-2015 年)》的编制和实施过程。系统介绍了对大数据概念、内涵、技术和应用方面的认识,介绍了在上海信息化建设的基础和现状之上,如何让大数据在上海落地,并着力解决大数据应用过程中的关键问题,开展数据科学前瞻研究和人才培养;对三年行动计划进行了全面解读。《汇计划在行动》还介绍了“上海大数据产业技术创新战略联盟”发起、组建、运行方面的情况;介绍了“上海市数据科学重点实验室”的研究方向、管理模式和开放模式。 《汇计划在行动》可供大数据及相关产业的从业人员,以及政府相关部门的决策、管理人员参考。
SQL用于在数据库中插入和提取数据,是操纵数据库中数据的一种国际标准。本书涵盖了SQL的方方面面,包括基础知识、数据库设计、数据库的创建,以及SQL语言在各种数据库中的应用等内容。 本书提供了一些基本代码、理论、概念和技术,以及大量有用示例,使得您能够针对各种实际情况快速设计数据库并编写SQL代码。每章末的练习都有助于您巩固所学的知识。阅读完本书后,您将能够轻松处理有关SQL的多种难题。 本书主要内容:如何从数据库中获得想要的数据;利用SQL的内置功能使用和操纵数据的过程;如何从众我不同的表中检索数据;如何在数据库中创建各种级别的安全,使得您能够编辑数据或者改变数据库的结构;标准化的理论和实际应用;高级数据库设计。 本书读者对象:本书既适合于具有一定编程经验并希望控究如何使用SQL开发数据
如果你是一名IT工程师,CTO希望你在一周内提交一份公司未来IT基础架构的初步建议;如果你是一位IT营销人员,客户需要你在一周内向他汇报未来大数据的大致技术方向;……在这个信息严重过剩的时代,一周内从浩渺的技术细节的海洋中抓住关键的技术脉络,并进一步提出有理论依据的技术思考,这几乎是不可能完成的任务。您是否想过阅读一本关于大数据的图书帮助解决如上问题?浩如烟海的大数据领域图书可以大致归纳为三类:类是描述大数据的应用前景与社会意义;第二类是研讨大数据作为一个大型IT的架构与技术架构;第三类是研讨大数据领域的具体技术,例如HADOOP相关的编程等。对于需要快速掌握大数据技术脉络,或者是需要对未来IT做思考的技术工作者来说,最需要的是第二类图书所提供的化知识。但目前业界大数据相关的书籍与资料,大多是类与第
本书是“十三五”职业教育国家规划教材。本书分为理论篇、工具篇和实训篇。理论篇主要介绍数据挖掘的基础知识、基本任务和常用方法,侧重培养学生对于数据挖掘基本概念等理论知识的正确理解;工具篇主要介绍PMT这
本书主要分为两大部分,基础篇和建模应用篇。基础篇介绍了有关Python开发环境的搭建、Python基础入门、函数、面向对象编程、实用模块和图表绘制等基础知识。建模应用篇主要介绍了目前在数据挖掘中的常用