本书是《实用数据结构基础(第四版)》(陈元春、王中华、张亮、王勇编著,中国铁道出版社出版) 的配套学习指导书。全书内容分为5部分:教学内容指导(包括对主教材第1~10章的知识点分析、典型 习题分析和各章习题解答);自主设计实验指导(对10个自主设计实验的设计思想、算法分析进行了详细 指导);模拟试卷;模拟试卷参考答案;数据结构课程设计报告样例。 本书对数据结构的概念和原理的阐述通俗易懂,例子翔实;习题难易适中,题型丰富;对数据结构 基本运算的分析注重实现的过程。本书以C/C++语言作为算法的描述语言,对于书中的实验和一些重要 的算法均给出了完整的C/C++语言源程序,并全部在Visual C++ 6.0环境下运行通过。 本书适合作为普通高等院校计算机类专业数据结构课程的教学辅导书,也可作为成
《驾驭大数据》为读者提供了处理大数据和在你的企业中培养一种创新和发现的文化所需的工具、过程和方法,描绘了一个易于实施的行动计划,以帮助你的企业发现新的商业机会,实现新的业务流程,并做出更明智的决策。 本书主要介绍了如何驾驭大数据浪潮,并详细地介绍了什么是大数据,大数据为什么重要,以及如何应用大数据。本书还从具体实用的角度,介绍了用于分析和操作大数据的工具、技术和方法;以及人才和企业文化的角度,介绍了如何使分析专家、分析团队以及所需的分析原则更加高效,如何通过分析创新中心使得分析更加有创造力,以及如何改变分析文化。 《驾驭大数据》适于所有对数据、数据挖掘、数据分析感兴趣的技术人员和决策者阅读。
MongoDB是一种面向文档的分布式数据库,可扩展,表结构自由,并且支持丰富的查询语句和数据类型。时至今日,MongoDB以其灵活的数据存储方式逐渐成为IT行业非常流行的一种非关系型数据库(NoSql)。 《大数据存储MongoDB实战指南》从学习与实践者的视角出发,本着通俗精简、注重实践、突出精髓的原则,精准剖析了MongoDB的诸多概念和要点。全书共分4个部分,分别从基础知识、深入理解MongoDB、监控与管理MongoDB和应用实践几个维度详细地介绍了MongoDB的特点及应用实例。 《大数据存储MongoDB实战指南》适合有海量数据存储需求的人员、数据库管理开发人员、数据挖掘与分析人员以及各类基于数据库的应用开发人员。读者将从书中获得诸多实用的知识和开发技巧。
本书根据教育.部高等学校计算机基础教学指导委员会编制的《普通高等学校计算机基础教学基本要求》,为满足高等教育对数据库技术和程序设计方面的基本要求进行编写。本书共11章,包括数据库基础知识、Access
本书介绍了大数据分析的多种模型、所涉及的算法和技术、实现大数据分析系统所需的工具以及大数据分析的具体应用。本书共16章。第1章为绪论,就大数据、大数据分析等概念进行了阐释,并对本书内容进行了概述;第2~7章介绍了关联分析模型、分类分析模型、聚类分析模型、结构分析模型和文本分析模型;第8章介绍大数据分析的数据预处理问题;第9章介绍降维方法;第10章介绍了数据仓库的概念、内涵、组成、体系结构和建立方法,还介绍了分布式数据仓库系统和内存数据仓库系统。第11章介绍大数据分析算法中的回归算法、关联规则挖掘算法、分类算法以及聚类算法的实现。第12~14章介绍了三种用于实现大数据分析算法的平台,即并行计算平台、流式计算平台和大图分析平台。第15章和第16章介绍两类大数据分析的具体应用,分别讲述了社会网络分析和推荐系
《数据挖掘与教学建模》以国际数据挖掘标准流程(GRISP-DM)为依据,以企业管理面临的现实问题为应用案例,由浅入深介绍数据挖掘方法及其解决问题过程的数据理解、数据处理、数据分析、数学建模、模型结果评估等内容,并引人应用广泛的数据挖掘Clementine软件辅助问题案例的解决,使读者不仅可以集中地学习数据挖据的主要理论方法,而且可以了解基于数据挖掘的数学建模过程,可以学习应用软件辅助解决问题的操作方法。 《数据挖掘与教学建模》把理论、案例、建模、软件辅助结合一体统一叙述,简述理论,突出应用,详细分析,展示过程,既考虑高校学生的学习需要,分本科生与研究生学习层次,又考虑企业管理者的应用与实践需要。 《数据挖掘与教学建模》可作为数据挖掘理论与技术的教学、实践、应用和提高的教科书或参考书。适
大数据的搜索与挖掘,在当今的“互联网+”时代是很有必要的。本书提出的分布式大数据搜索与日志挖掘及可视化方案是基于ELK Stack而提出的,它能有效应对海量大数据所带来的分布式存储与处理、全文检索、日志挖掘、可视化等问题。构建在全文检索开源软件Lucene之上的Elasticsearch,不仅能对海量规模的数据完成分布式索引与检索,还能提供数据聚合分析。据国际的数据库产品评测机构DB Engines的统计,在2016年1月,Elasticsearch已超过Solr等,成为排名前列的搜索引擎类应用;Logstash能有效处理来源于各种数据源的日志信息;Kibana能得出可视化分析结果。了解基于ELK Stack的大数据搜索与日志挖掘及可视化方案,掌握Elasticsearch、Logstash、Kibana的基本使用方法和技巧,很有必要。 全书以模块化的方式进行组织。和初版相比,本书力求反映ELK Stack的新成果,内容
《大数据:互联网大规模数据挖掘与分布式处理》源自作者在斯坦福大学教授多年的“Web挖掘”课程材料,主要关注大数据环境下数据挖掘的实际算法。书中分析了海量数据集数据挖掘常用的算法,介绍了目前Web应用的许多重要话题。主要内容包括: 分布式文件系统以及Map-Reduce工具; 相似性搜索; 数据流处理以及针对易丢失数据等特殊情况的专用处理算法; 搜索引擎技术,如谷歌的PageRank; 频繁项集挖掘; 大规模高维数据集的聚类算法; Web应用中的关键问题:广告管理和推荐系统。
这是一本让人脑洞大开的内容玩法书,给新一代叙事者提供了十八般武器。清晰的构架、简洁的语言、坦率的态度,整本书无不流露着新一代互联网原住民颠覆传统的创新基因。 运营无招,数据有度。把握好数据的尺度,把数据做出角度、深度、温度、态度,这是本书的核心。围绕新消费、玩互动、融呈现、变模式这4个维度,本书从场景化叙事聊到用户激励和内容产品经理,分享了内容、传播、团队迎接变革的心路历程。 产品的玩法本身会经历兴衰,但只要人的创新精神在,就可以在新的场景下持续玩好内容。作者的探索与思考,无疑可以给内容运营从业者带来多元启发。 推荐准备从事内容传播和广告策划工作的在校生、互联网产品运营从业者、移动互联网内容创新领域的研究者,以及企业市场和品牌传播从业者参考阅读。
《数据挖掘:实用机器学习工具与技术(原书第3版)》是机器学习和数据挖掘领域的经典畅销教材,被众多国外名校选为教材。书中详细介绍用于数据挖掘领域的机器学习技术和工具以及实践方法,并且提供了一个公开的数据挖掘工作平台Weka。本书主要内容包括:数据输入/输出、知识表示、数据挖掘技术(决策树、关联规则、基于实例的学习、线性模型、聚类、多实例学习等)以及在实践中的运用。本版对上一版内容进行了全面更新,以反映自第2版出版以来数据挖掘领域的技术变革和新方法,包括数据转换、集成学习、大规模数据集、多实例学习等,以及新版的Weka机器学习软件。