本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
本书紧扣“大数据”这一时代主题,着眼于侦查领域大数据运用在法律研究方面的空白,构建起包括思维、模式、方法等全方位的大数据侦查体系,同时对大数据侦查可能产生的法律问题进行探讨,为侦查实务中大数据的运用提供方法、法律理论及程序上的指导。
本书是根据全国高等教育自学考试指导委员会制定的《数据库及其应用自学考试大纲》,为参加高等教育自学考试的考生编写的教材。深入浅出地阐述数据库系统的基本概念、基本理论和操作技术。本书共有8章,第一~三章阐述数据库的基本概念、基本理论和基本方法,包括数据库系统概论、关系模型、数据库设计;第四、五章以MySQL为实验平台,介绍SQL和数据库编程技术;第六~八章介绍数据库管理技术,包括事务与事务处理、备份与恢复、安全性管理。 本书的目的是使考生掌握数据库系统的基本概念、基本理论和基本操作技术,为今后从事数据库管理和数据库应用系统的开发工作奠定理论基础与掌握实际操作的技能。本书适合作为高等教育自学考试的教材,也可以作为高等学校计算机、信息等专业本科、专科学生的教科书。
本书是从大数据和云计算相结合的视角,系统地介绍大数据云架构技术与实践的专业图书,全书分为五篇19章,分别介绍大数据云计算的概论、关键技术、体系架构、云架构实践与编程和安全。本书层次清晰,结构合理,主要内容包括大数据云计算关系、大数据应用价值、分布式计算、NoSQL数据库、机器学习、虚拟化、Docker容器、Web 2.0、绿色数据中心、基础设计即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)、容器即服务(CaaS)、大数据云架构搭建、Spark大数据编程、大数据和云计算面临的安全威胁、保障大数据安全、应用大数据保障安全等。本书可作为高年级本科生和研究生教材,也可作为广大科学技术人员和计算机爱好者的参考书。
掌握数据可视化技术是未来工作和学习的能力,是展示理念和成果的重要手段。阅读并完成本书的实践,你将快速地学会数据获取、清洗、分析、可视化及发布的完整流程。本书以丰富的实践案例解析数据可视化的制作理念和具体方法,紧密围绕当前数据可视化领域的实际需求,全面介绍数据可视化的概念和技巧。本书包含基础知识、数据获取、数据清洗、数据分析、可视化基础和原则、数据可视化工具和可视化作品发布等内容,基于具体案例多角度启发和引导读者的创新思维,增强读者对抽象数据的把握及综合可视化能力的提升。本书内容通俗易懂,简明实用,配套的教学辅助资料可免费下载。本书适合零编程基础的数据可视化从业者和高校师生阅读,有一定工作经验的数据可视化工程师也可以从本书中学到大量实用的技能。
本书以数据挖掘为应用载体,按应用频率的高低,系统地介绍分治算法、贪心算法、搜索算法和动态规划算法。同时,介绍算法分析所用的渐近符号及常用的分析方法,包括递归分析方法、非递归分析方法。本书的特点是结合作者及其团队研究的数据挖掘问题,注重介绍算法的基本思想及算法应用的启发性。
程朝斌、张水波编著的《MySQL数据库管理与开发实践教程》讲述MySQL数据库的开发技术。全书共分为16章,内容包括MySQL发展历史,与其他数据库的区别,MySQL常用的一些工具,MySQL文件结构、系统架构、存储引擎、数据类型,数据库和表的创建、管理和删除,数据完整性约束,包括主键约束、外键约束、非空约束、默认值约束、 约束和自增约束等,数据的单表查询和多表查询,视图和索引,变量、常量、运算符和表达式、运算符的优先级、流程控制语句、自定义函数,系统函数,存储过程和触发器,事务管理,性能优化,日志文件管理、权限管理以及数据的备份和还原。 一章通过一个综合案例实现网上购物系统的数据库。 本书可作为在校大学生学习使用MySQL的教学资料,也可以作为非计算机专业学生学习MySQL的参考书。
本书针对计算机、信息管理和其他相关专业学生的发展需求,系统、全面地介绍了大数据技术与应用的基本知识和技能,详细介绍了大数据基础、大数据的行业应用、大数据的基础设施、大数据技术基础、Hadoop分布式架构、大数据管理、大数据分析、人工智能与机器学习、数据科学与数据科学家、开放数据的时代,以及大数据发展与展望等内容,具有较强的系统性、可读性和实用性。本书是为高等院校 大数据 相关课程全新设计编写、具有丰富实践特色的主教材,也可供有一定实践经验的软件开发人员和管理人员参考,或作为继续教育的教材。 本书配套授课电子课件,需要的教师可登录www.cmpedu.com免费注册、审核通过后下载,或联系编辑索取(微信:15910938545,QQ:2850823885,email:2308140194@qq.com,电话:010-88379739)另外,为方便任课教师进行交流,提供本科计算机
社交网络融合为社会计算等各项研究提供更充分的用户行为数据和更完整的网络结构,从而更有利于人们通过社交网络认识和理解人类社会,具有重要的理论价值和实践意义。社交网络中的关联用户挖掘旨在通过挖掘不同社交网络中属于同一自然人的不同账号,从而实现社交网络的深度融合。因此,关联用户挖掘是大型社交网络融合的基础问题,近年来已引起人们的广泛关注。考虑真实世界的朋友圈极具个性化,即现实中没有两个人具有完全一致的朋友圈,同时,相同的用户在不同的社交网络中往往具有部分相同的好友关系。本书基于社交网络的好友关系,充分利用好友关系的唯一性、稳定性和一致性,探索关联用户挖掘的方法。
本书以数据为研究对象,论述了从数据起源到数据未来的全过程,通过对数据的研究,揭示了物质、数据与信息之间的深刻关系,构建了一门独立的数据科学体系。本书对数据与数据科学的基本原理与规律、数据的基本定律与基础问题、数据与数据科学的基本方法等做了全面、细致的探索,提出了物质定义数据、数据定义信息等重要观点。
当前,全国首批已有38所高校开设“大数据”本科专业,预计在未来5年中开设“大数据”专业的本科和高职高专院校数量将超过500所,社会对大数据人才需求将达到100万人/年。案例教学是大数据人才培养的重要内容。 《大数据案例精析》以分析大数据在各个行业领域中的典型应用为主线,选取 有代表性的近30个案例进行重点分析,行业包括政府大数据、金融大数据、医疗大数据、交通大数据、教育大数据、旅游大数据、通信大数据、电商大数据、工业大数据以及物流大数据等,每个行业平均选取3个案例进行分析,形成相对统一的案例分析体系,同时还提供相应的教学课件配套资源。
本书是中国人民大学出版社出版的教材《统计数据分析基础教程(第二版)——基于SPSS 20和Excel 2010的调查数据分析》的配套辅导书。 由于本次修订对教材内容进行了更加适当的筛选,同时对例题和上机实验题进行了大幅更新,于是本同步配套辅导书也做了相应的修订。 本书以习题和上机实验指导的方式给出了教材中“思考题与上机实验题”的解答,以便帮助读者消化教材内容。本书包含10章的上机实验指导共32个。包括:*抽样、调查问卷制作、问卷数据的录入与清理、单选题的一维频率分析、两个单选题的交叉表分析、多选题的一维频率分析和交叉表分析、描述统计分析、假设检验、单因素方差分析、线性相关分 析与线性回归分析等。 本书可作为各级各类高等院校本科生统计数据分析的入门书,也可以作为MBA学生、研究生以及从事统计数据分析工作的人士
随着数据集规模和复杂度的持续上升,分析员必须利用更高级的软件工具来执行间接的、自动的智能化数据分析。《数据挖掘:概念、模型、方法和算法(第2版)》介绍了通过分析高维数据空间中的海量原始数据来提取用于决策的新信息的尖端技术和方法。 本书开篇阐述数据挖掘原理,此后在示例的引导下详细讲解起源于统计学、机器学习、神经网络、模糊逻辑和演化计算等学科的具有代表性的、*前沿的挖掘方法和算法。本书还着重描述如何恰当地选择方法和数据分析软件并合理地调整参数。每章末尾附有复习题。 本书主要用作计算机科学、计算机工程和计算机信息系统专业的研究生数据挖掘教材,高年级本科生或具备同等教育背景的读者也完全可以理解本书的所有主题。本书特色◆ 介绍支持向量机(SVM)和Kohonen映射◆ 讲解DBSCAN、BIRCH和分布式DBSCAN聚类算法
本书以实际数据的分析处理为例,介绍相应统计方法的运用,以及在EViews10.0中的实现。本书涉及处理以时间序列为主的多种类型的数据,包括描述统计、回归分析、传统时间序列等基本的数据分析以及建立条件异方差、向量自回归(包括非结构化和结构化模型)、向量误差修正模型、Panel Data模型、状态空间模型、混频数据模型等复杂的计量经济模型.本书为运用各种统计方法和经济计量方法处理数据的读者,提供了一个简便易学、易操作的工具。读者可以省去许多时间,很快就能够学习掌握该软件的运用。
《数据挖掘技术及其应用(精)》(作者杨杰、姚莉秀)系统地讲述了数据挖掘的基本概念和基本原理,并列举了在相应领域具有参考价值的算法及其改进和应用,是作者多年来从事教学和科研实践的成果。全书共9章,主要内容有:数据挖掘的基本概念和原理,数据预处理,各种分类、聚类和关联规则提取算法,以及在生物信息学、材料学中的实际应用案例。 《数据挖掘技术及其应用(精)》可用作计算机专业本科高年级学生或研究生的教材或参考书,也可供从事计算机信息处理、数据挖掘、工业优化等有关方面工作的科技人员参考。
朱小栋、徐欣编著的《数据挖掘原理与商务应用(普通高等院校电子商务十二五规划重点教材)》的内容涵盖如何利用相关软件产品实现数据挖掘的经典算法和技术,还涵盖数据挖掘技术在商务领域中的应用。本书既适合计算机应用技术专业,也适合经管类信息管理与电子商务专业的学生学习。书中既注重从计算机应用角度来讲解数据挖掘,又注重数据挖掘与商务智能、管理科学、决策支持系统的结合。
由周跃南、蔡学军主编的《云计算技术实训教程 (云计算技术与应用课程群高等职业教育十三五规划教材)》根据职业教育的教学特点和培养目标,依托长城云教室和云实训平台,采用 实训任务驱动式教程 方式编写,介绍了云计算基础技能,也补充了一些相关的云计算知识,做到以技能训练为主,理论与实践相结合。全书共分八大任务,包括资源管理、虚拟机管理、网络管理、存储管理、安全管理、用户管理等方面的内容。 本书是中职云计算技术与应用专业及相关专业的云计算技术技能训练教材,也适合高职云计算技术与应用专业使用,还可以作为相关技术人员的培训教材。
本教程中预备知识,介绍项目中实验环境、程序组织方式和管理方法,讲解程序及算法的效率估算方法和分析技巧,描述一般测试技术和调试方法,以及测试数据与测试用例的设计安排技巧;基础实验,首先安排重要的验证性实验,然后设计基于基本数据结构的简单应用实验;综合实验(即课程设计),介绍在一个项目中选择和使用多种基本数据结构的依据和方法,讲解如何有效地将它们融合在一起解决实际的复杂应用问题。 本教程在内容选取及编排顺序上,与严蔚敏老师编著的《数据结构(C 语言版)》(978-7-302-14751-0,清华大学出版社出版)保持一致,可作为高等院校计算机及相关专业数据结构课程的实验教材。
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
为数据挖掘入门级教材,共分8章,主要内容分为三个专题:技术、数据和评估。技术专题包括决策树技术、K-means算法、关联分析技术、神经网络技术、回归分析技术、贝叶斯分析、凝聚聚类、概念分层聚类、混合模型聚类技术的EM算法、时间序列分析和基于Web的数据挖掘等常用的机器学习方法和统计技术。数据专题包括数据库中的知识发现处理模型和数据仓库及OLAP技术。评估专题包括利用检验集分类正确率和混淆矩阵,并结合检验集置信区间评估有指导学习模型,使用无指导聚类技术评估有指导模型,利用Lift和假设检验比较两个有指导学习模型,使用MS Excel 2010和经典的假设检验模型评估属性,使用簇质量度量方法和有指导学习技术评估无指导聚类模型。本书秉承教材风格,强调广度讲解。注重成熟模型和开源工具的使用,以提高学习者的应用能力为目标;
本书在介绍大数据发展背景、特点及主要技术层面的基础上,对大数据的数据采集、数据存储、常见计算模式和典型系统工具进行了分析介绍。本书同时对各种典型系统工具进行了讲解,包括大数据查询分析计算及典型工具(HBase、Hive)、批处理计算及典型工具(MapReduce、Spark)、流式计算及典型工具(Storm、Apex、Flink)、事件流及典型工具(Druid)等。本书提供了大量的实例和源代码供读者参考,指导读者快速、无障碍地了解和掌握常见大数据分析工具的使用。本书适合作为计算机及相关专业的教学用书,也可以作为大数据初学者的自学教材和参考手册。
数据挖掘,继承和发展经典统计分析的理论成果,结合现代机器学习方法,借助大规模高性能计算不断逼近大数据规律真相,突破了传统数据分析方法的大数据应用局限;R语言,以其开源性、易用性、全面性、前沿性和可扩充性,是实现大数据分析实践的有效工具。《R语言数据挖掘》努力坚持:讲明白理论原理,讲明白案例问题,讲明白实现步骤,讲明白结果含义的写作风格,围绕大数据分析的四大核心问题:建立数据预测模型,揭示数据内在结构,探究数据关联性,诊断异常数据,以应用案例为线索,深入浅出地讨论了众多经典数据挖掘方法原理,完整详细地讲解了R语言实现过程。本书可作为高等院校统计学、数据科学和大数据技术、大数据管理等相关专业本科生和研究生数据挖掘、机器学习和其他数据分析课程的教材,也可作为科研机构、政府和企业经营管
本书着力于介绍数据挖掘基础知识、基本原理、常用算法,主要内容包括数据挖掘概述、数据的描述与可视化、数据的采集和预处理、数据的归约、关联规则挖掘、分类与预测、 非线性预测模型、聚类分析、深度学习简介、使用 Weka 进行数据挖掘。本书通俗易懂,注重基础知识、基本原理和基本方法,注重启发和引申,以培养学生独立思考和独立发现的能力。本书适合作为数据科学与大数据、信息管理、统计等专业的本科层次基础课教材,也可作为相关专业研究生层次的参考用书。
本书是 十三五 国家重点图书规划 大数据科学 丛书著作。 全书从管理的角度分时代篇、概念篇、学术篇和实践篇4篇,对大数据领导者的研究内容展开探讨。本书共10章,主要内容包括:大数据的概念和特点,大数据时代的机遇与挑战,首席数据官的兴起和内涵,首席数据官的理论基础、角色以及与组织绩效的关系,首席数据官需求评估和岗位设计,中国的大数据战略以及对首席数据官的访谈实录。对于业界人士,可以借助本书深入理解首席数据官的角色和岗位职责;对于研究人员,可以通过本书了解首席数据官的理论基础和研究方向。 大数据科学 丛书涉及大数据理论、技术、产业和管理的方方面面,旨在帮助相关专业的学者,特别是产业界了解世界大数据研究和应用的前沿,也可以作为教学之用。