计算广告是一项新兴的研究课题,它涉及大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学等诸多领域的知识。本书从实践出发,系统地介绍计算广告的产品、问题、系统和算法,并且从工业界的视角对这一领域进行具体技术的深入剖析。 本书立足于广告市场的根本问题,从计算广告各个阶段所遇到的市场挑战出发,以广告系统业务形态的需求和变化为主线,依次介绍合约广告系统、竞价广告系统、程序化交易市场等重要课题,并对计算广告涉及的关键技术和算法做深入的探讨。这一版中更是加入了深度学习的基础方法论及其在计算广告中的应用。 无论是互联网公司商业化部门的产品技术人员,还是对个性化系统、大数据变现或交易有兴趣的产品技术人员,传统企业互联网化进程的决策者,传统广告业务的从业者,互联网创
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第壹部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式
本书系统讲授数据挖掘的原理、主要方法及其Python实现,共分三部分:第一部分包含第1~2章,介绍数据挖掘的基本概念、流程和数据预处理;第二部分包含第3~11章,介绍经典的分类算法(包括朴素贝叶斯分类器、决策树、k-近邻、支持向量机等)、经典的聚类分析、关联分析、人工神经网络和Web挖掘等方法;第三部包含第12~14章,共有3个综合案例,包括泰坦尼克号生存数据分析、心脏病预测分析和旅游评论倾向性分析。
本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
本书是《实用数据结构基础(第四版)》(陈元春、王中华、张亮、王勇编著,中国铁道出版社出版) 的配套学习指导书。全书内容分为5部分:教学内容指导(包括对主教材第1~10章的知识点分析、典型 习题分析和各章习题解答);自主设计实验指导(对10个自主设计实验的设计思想、算法分析进行了详细 指导);模拟试卷;模拟试卷参考答案;数据结构课程设计报告样例。 本书对数据结构的概念和原理的阐述通俗易懂,例子翔实;习题难易适中,题型丰富;对数据结构 基本运算的分析注重实现的过程。本书以C/C++语言作为算法的描述语言,对于书中的实验和一些重要 的算法均给出了完整的C/C++语言源程序,并全部在Visual C++ 6.0环境下运行通过。 本书适合作为普通高等院校计算机类专业数据结构课程的教学辅导书,也可作为成
当下,由于强大的数据挖掘软件平台很容易获得,草率地使用数据挖掘方法和技术将导致挖掘的结果混淆难解。这种失误往往源自盲目使用“黑盒子”方法进行数据挖掘,而好的避免途径就是使用“自盒子”方法,理解隐藏在软件背后的算法和统计模型结构。 本书分为7章,第l章是对降维方法的介绍,这是数据挖掘技术的一个先决条件;第2章至第6章为经典的数据挖掘算法和技术,包括一元回归模型、多元回归模型、逻辑回归模型、贝叶斯网络分析以及遗传算法,通过实际案例引导读者由已预处理的数据使用不同的挖掘技术从而得出所需结论;第7章为基于数据挖掘过程模型上的多个案例研究,通过多个领域的案例来阐述算法和技术是如何被运用的。 本书可作为数据挖掘课程教学用书,适用于高年级本科生和研究生的教学,也可供科研人员参考使用。
本书分10章,全面介绍了Hadoop云技术及其在光网络研究方面的真实案例。读者通过本书的学习,可以掌握搭建及维护Hadoop平台的相关知识和技术。
本书紧扣“大数据”这一时代主题,着眼于侦查领域大数据运用在法律研究方面的空白,构建起包括思维、模式、方法等全方位的大数据侦查体系,同时对大数据侦查可能产生的法律问题进行探讨,为侦查实务中大数据的运用提供方法、法律理论及程序上的指导。
本教程中预备知识,介绍项目中实验环境、程序组织方式和管理方法,讲解程序及算法的效率估算方法和分析技巧,描述一般测试技术和调试方法,以及测试数据与测试用例的设计安排技巧;基础实验,首先安排重要的验证性实验,然后设计基于基本数据结构的简单应用实验;综合实验(即课程设计),介绍在一个项目中选择和使用多种基本数据结构的依据和方法,讲解如何有效地将它们融合在一起解决实际的复杂应用问题。 本教程在内容选取及编排顺序上,与严蔚敏老师编著的《数据结构(C 语言版)》(978-7-302-14751-0,清华大学出版社出版)保持一致,可作为高等院校计算机及相关专业数据结构课程的实验教材。
本书在介绍大数据发展背景、特点及主要技术层面的基础上,对大数据的数据采集、数据存储、常见计算模式和典型系统工具进行了分析介绍。本书同时对各种典型系统工具进行了讲解,包括大数据查询分析计算及典型工具(HBase、Hive)、批处理计算及典型工具(MapReduce、Spark)、流式计算及典型工具(Storm、Apex、Flink)、事件流及典型工具(Druid)等。本书提供了大量的实例和源代码供读者参考,指导读者快速、无障碍地了解和掌握常见大数据分析工具的使用。本书适合作为计算机及相关专业的教学用书,也可以作为大数据初学者的自学教材和参考手册。
为数据挖掘入门级教材,共分8章,主要内容分为三个专题:技术、数据和评估。技术专题包括决策树技术、K-means算法、关联分析技术、神经网络技术、回归分析技术、贝叶斯分析、凝聚聚类、概念分层聚类、混合模型聚类技术的EM算法、时间序列分析和基于Web的数据挖掘等常用的机器学习方法和统计技术。数据专题包括数据库中的知识发现处理模型和数据仓库及OLAP技术。评估专题包括利用检验集分类正确率和混淆矩阵,并结合检验集置信区间评估有指导学习模型,使用无指导聚类技术评估有指导模型,利用Lift和假设检验比较两个有指导学习模型,使用MS Excel 2010和经典的假设检验模型评估属性,使用簇质量度量方法和有指导学习技术评估无指导聚类模型。本书秉承教材风格,强调广度讲解。注重成熟模型和开源工具的使用,以提高学习者的应用能力为目标;
科技的进步,特别是信息产业的发展,把整个社会带入一个崭新的信息时代。随着计算机应用的普及和数据库技术的不断发展,数据仓库与数据挖掘技术的应用领域越来越广泛。 《数据仓库与数据挖掘》第1章介绍数据仓库、数据挖掘的一般知识和应用领域。第2~8章介绍数据仓库和数据挖掘的理论和技术,其中第2、3章侧重数据仓库,重点阐述了数据仓库的架构、olap等内容,第4~8章侧重数据挖掘,重点阐述了关联规则、粗糙集、决策树、聚类分析和兴趣度量等内容。第9章给出了数据仓库与数据挖掘方面的应用案例。 《数据仓库与数据挖掘》是为软件工程硕士量身定做的教材,也可作为计算机专业、信息类专业、管理类专业相关课程的教材和教学参考书。
本书以实际数据的分析处理为例,介绍相应统计方法的运用,以及在EViews10.0中的实现。本书涉及处理以时间序列为主的多种类型的数据,包括描述统计、回归分析、传统时间序列等基本的数据分析以及建立条件异方差、向量自回归(包括非结构化和结构化模型)、向量误差修正模型、Panel Data模型、状态空间模型、混频数据模型等复杂的计量经济模型.本书为运用各种统计方法和经济计量方法处理数据的读者,提供了一个简便易学、易操作的工具。读者可以省去许多时间,很快就能够学习掌握该软件的运用。
本书以数据为研究对象,论述了从数据起源到数据未来的全过程,通过对数据的研究,揭示了物质、数据与信息之间的深刻关系,构建了一门独立的数据科学体系。本书对数据与数据科学的基本原理与规律、数据的基本定律与基础问题、数据与数据科学的基本方法等做了全面、细致的探索,提出了物质定义数据、数据定义信息等重要观点。
本书是中国人民大学出版社出版的教材《统计数据分析基础教程(第二版)——基于SPSS 20和Excel 2010的调查数据分析》的配套辅导书。 由于本次修订对教材内容进行了更加适当的筛选,同时对例题和上机实验题进行了大幅更新,于是本同步配套辅导书也做了相应的修订。 本书以习题和上机实验指导的方式给出了教材中“思考题与上机实验题”的解答,以便帮助读者消化教材内容。本书包含10章的上机实验指导共32个。包括:*抽样、调查问卷制作、问卷数据的录入与清理、单选题的一维频率分析、两个单选题的交叉表分析、多选题的一维频率分析和交叉表分析、描述统计分析、假设检验、单因素方差分析、线性相关分 析与线性回归分析等。 本书可作为各级各类高等院校本科生统计数据分析的入门书,也可以作为MBA学生、研究生以及从事统计数据分析工作的人士
《数据挖掘技术及其应用(精)》(作者杨杰、姚莉秀)系统地讲述了数据挖掘的基本概念和基本原理,并列举了在相应领域具有参考价值的算法及其改进和应用,是作者多年来从事教学和科研实践的成果。全书共9章,主要内容有:数据挖掘的基本概念和原理,数据预处理,各种分类、聚类和关联规则提取算法,以及在生物信息学、材料学中的实际应用案例。 《数据挖掘技术及其应用(精)》可用作计算机专业本科高年级学生或研究生的教材或参考书,也可供从事计算机信息处理、数据挖掘、工业优化等有关方面工作的科技人员参考。
掌握数据可视化技术是未来工作和学习的能力,是展示理念和成果的重要手段。阅读并完成本书的实践,你将快速地学会数据获取、清洗、分析、可视化及发布的完整流程。本书以丰富的实践案例解析数据可视化的制作理念和具体方法,紧密围绕当前数据可视化领域的实际需求,全面介绍数据可视化的概念和技巧。本书包含基础知识、数据获取、数据清洗、数据分析、可视化基础和原则、数据可视化工具和可视化作品发布等内容,基于具体案例多角度启发和引导读者的创新思维,增强读者对抽象数据的把握及综合可视化能力的提升。本书内容通俗易懂,简明实用,配套的教学辅助资料可免费下载。本书适合零编程基础的数据可视化从业者和高校师生阅读,有一定工作经验的数据可视化工程师也可以从本书中学到大量实用的技能。
本书是根据全国高等教育自学考试指导委员会制定的《数据库及其应用自学考试大纲》,为参加高等教育自学考试的考生编写的教材。深入浅出地阐述数据库系统的基本概念、基本理论和操作技术。本书共有8章,第一~三章阐述数据库的基本概念、基本理论和基本方法,包括数据库系统概论、关系模型、数据库设计;第四、五章以MySQL为实验平台,介绍SQL和数据库编程技术;第六~八章介绍数据库管理技术,包括事务与事务处理、备份与恢复、安全性管理。 本书的目的是使考生掌握数据库系统的基本概念、基本理论和基本操作技术,为今后从事数据库管理和数据库应用系统的开发工作奠定理论基础与掌握实际操作的技能。本书适合作为高等教育自学考试的教材,也可以作为高等学校计算机、信息等专业本科、专科学生的教科书。
大数据技术让我们以一种前所未有的方式,对海量数据进行分析,从中获得有巨大价值的产品和服务,*终形成变革之力。本书围绕Hadoop和Spark两个主流大数据技术进行讲解,主要内容包括Hadoop环境配置、Hadoop分布式文件系统(HDFS)、Hadoop分布式计算框架MapReduce、Hadoop资源调度框架YARN与Hadoop新特性、Hadoop分布式数据库HBase、数据仓库Hive、大数据离线处理辅助系统、Spark Core、Spark SQL、Spark Streaming等知识。本书紧密结合实际应用,运用大量案例说明和实践,提炼含金量十足的开发经验。另外,本书配以多元的学习资源和支持服务,包括视频教程、案例素材下载、学习交流社区、讨论组等学习内容,为读者带来全方位的学习体验。
数据挖掘,继承和发展经典统计分析的理论成果,结合现代机器学习方法,借助大规模高性能计算不断逼近大数据规律真相,突破了传统数据分析方法的大数据应用局限;R语言,以其开源性、易用性、全面性、前沿性和可扩充性,是实现大数据分析实践的有效工具。《R语言数据挖掘》努力坚持:讲明白理论原理,讲明白案例问题,讲明白实现步骤,讲明白结果含义的写作风格,围绕大数据分析的四大核心问题:建立数据预测模型,揭示数据内在结构,探究数据关联性,诊断异常数据,以应用案例为线索,深入浅出地讨论了众多经典数据挖掘方法原理,完整详细地讲解了R语言实现过程。本书可作为高等院校统计学、数据科学和大数据技术、大数据管理等相关专业本科生和研究生数据挖掘、机器学习和其他数据分析课程的教材,也可作为科研机构、政府和企业经营管
社交网络融合为社会计算等各项研究提供更充分的用户行为数据和更完整的网络结构,从而更有利于人们通过社交网络认识和理解人类社会,具有重要的理论价值和实践意义。社交网络中的关联用户挖掘旨在通过挖掘不同社交网络中属于同一自然人的不同账号,从而实现社交网络的深度融合。因此,关联用户挖掘是大型社交网络融合的基础问题,近年来已引起人们的广泛关注。考虑真实世界的朋友圈极具个性化,即现实中没有两个人具有完全一致的朋友圈,同时,相同的用户在不同的社交网络中往往具有部分相同的好友关系。本书基于社交网络的好友关系,充分利用好友关系的唯一性、稳定性和一致性,探索关联用户挖掘的方法。
本书以数据挖掘为应用载体,按应用频率的高低,系统地介绍分治算法、贪心算法、搜索算法和动态规划算法。同时,介绍算法分析所用的渐近符号及常用的分析方法,包括递归分析方法、非递归分析方法。本书的特点是结合作者及其团队研究的数据挖掘问题,注重介绍算法的基本思想及算法应用的启发性。
本书针对计算机、信息管理和其他相关专业学生的发展需求,系统、全面地介绍了大数据技术与应用的基本知识和技能,详细介绍了大数据基础、大数据的行业应用、大数据的基础设施、大数据技术基础、Hadoop分布式架构、大数据管理、大数据分析、人工智能与机器学习、数据科学与数据科学家、开放数据的时代,以及大数据发展与展望等内容,具有较强的系统性、可读性和实用性。本书是为高等院校 大数据 相关课程全新设计编写、具有丰富实践特色的主教材,也可供有一定实践经验的软件开发人员和管理人员参考,或作为继续教育的教材。 本书配套授课电子课件,需要的教师可登录www.cmpedu.com免费注册、审核通过后下载,或联系编辑索取(微信:15910938545,QQ:2850823885,email:2308140194@qq.com,电话:010-88379739)另外,为方便任课教师进行交流,提供本科计算机