本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
部分(第1~4章)为基础和背景部分,主要介绍数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的本质,以及实践中常见分析项目类型的介绍。第二部分(第6~13章)是数据分析挖掘中的具体技巧和案例分享部分,主要介绍实践中常见的分析挖掘技术的实用技巧,并对大量的实践案例进行了全程分享展示。第三部分(第5章,第14~19章)是有关数据分析师的责任、意识、思维的培养和提升的总结和探索,以及一些有效的项目质控制度和经典的方法论介绍。
本书是《实用数据结构基础(第四版)》(陈元春、王中华、张亮、王勇编著,中国铁道出版社出版) 的配套学习指导书。全书内容分为5部分:教学内容指导(包括对主教材第1~10章的知识点分析、典型 习题分析和各章习题解答);自主设计实验指导(对10个自主设计实验的设计思想、算法分析进行了详细 指导);模拟试卷;模拟试卷参考答案;数据结构课程设计报告样例。 本书对数据结构的概念和原理的阐述通俗易懂,例子翔实;习题难易适中,题型丰富;对数据结构 基本运算的分析注重实现的过程。本书以C/C++语言作为算法的描述语言,对于书中的实验和一些重要 的算法均给出了完整的C/C++语言源程序,并全部在Visual C++ 6.0环境下运行通过。 本书适合作为普通高等院校计算机类专业数据结构课程的教学辅导书,也可作为成
本书根据高等院校培养综合型交叉学科本科人才的发展目标编写,介绍空间数据分析的原理与方法。全书共分17章,主要内容包括绪论、空间数据的性质、空间数据的完备化、空间数据的标准化、探索性空间数据分析、空间点模式分析、地统计数据插值、格数据统计、格数据回归分析、空间回归分析、面状数据空间模式分析、空间连续数据分析方法、非参数统计、空间抽样方法、空间度量算法、空间分析算法和空间统计分析算法。 本书可作为地理信息系统、计算机科学与技术、遥感科学与技术、测绘工程、地理科学等相关专业学生的教科书,同时也适合于从事空间数据分析、地理信息系统应用的人员参考。
本书根据*高等学校计算机基础教学指导委员会编制的《普通高等学校计算机基础教学基本要求》,为满足高等教育对数据库技术和程序设计方面的基本要求进行编写。本书共11章,包括数据库基础知识、Access 20*数据库、表的创建与使用、查询设计、结构化查询语言SQL、窗体设计、报表设计、宏、VBA与模块、数据库管理、数据库安全等。书中有丰富的案例和大量的练习题,还提供课后习题参考答案。本书内容叙述清楚、示例丰富、图文并茂、步骤清晰、易懂易学,适合广大应用型本科和高职高专院校教学使用,以及有一定计算机基础的爱好者自学使用,也可作为全国计算机等级考试参考书。
本书在介绍大数据发展背景、特点及主要技术层面的基础上,对大数据的数据采集、数据存储、常见计算模式和典型系统工具进行了分析介绍。本书同时对各种典型系统工具进行了讲解,包括大数据查询分析计算及典型工具(HBase、Hive)、批处理计算及典型工具(MapReduce、Spark)、流式计算及典型工具(Storm、Apex、Flink)、事件流及典型工具(Druid)等。本书提供了大量的实例和源代码供读者参考,指导读者快速、无障碍地了解和掌握常见大数据分析工具的使用。本书适合作为计算机及相关专业的教学用书,也可以作为大数据初学者的自学教材和参考手册。
《海量点云数据处理理论与技术》共分8章。第1章绪论,简要介绍海量点云处理技术的基础理论、方法以及主要内容。第2章介绍海量点云数据的预处理,包括点云数据的获取方案,点云的去噪、压缩、配准方法,以及点云空洞的插值方法。第3章介绍海量点云数据的重建方法,系统介绍常用的点云重建算法与特点,并详细介绍基于特征和基于切片的点云重建方法。第4章介绍点云数据及模型的质量评价,从理论和实际两方面对点云质量进行分析,总结点云配准过程中的误差传播模型,系统地归纳三维模型的质量评定方法。第5章介绍点云数据处理技术,详细介绍国内外常用的海量点云数据处理软件以及三维图像库。第6章介绍地面三维激光扫描仪在隧道监测领域的应用,系统介绍基于三维激光扫描技术的隧道点云数据获取、处理及变形分析方法。第7章介绍地面三维
科技的进步,特别是信息产业的发展,把整个社会带入一个崭新的信息时代。随着计算机应用的普及和数据库技术的不断发展,数据仓库与数据挖掘技术的应用领域越来越广泛。 《数据仓库与数据挖掘》第1章介绍数据仓库、数据挖掘的一般知识和应用领域。第2~8章介绍数据仓库和数据挖掘的理论和技术,其中第2、3章侧重数据仓库,重点阐述了数据仓库的架构、olap等内容,第4~8章侧重数据挖掘,重点阐述了关联规则、粗糙集、决策树、聚类分析和兴趣度量等内容。第9章给出了数据仓库与数据挖掘方面的应用案例。 《数据仓库与数据挖掘》是为软件工程硕士量身定做的教材,也可作为计算机专业、信息类专业、管理类专业相关课程的教材和教学参考书。
本书以关系数据库为重点,系统、完整地讲述了当前数据库技术的基本原理和应用实践。取材上力图反映当前数据库技术的发展水平和发展趋势。 本书共分8章。第1章绪论,概述了数据管理的进展、数据模型、数据库管理系统和数据库工程的基本概念。第2至4章讲解了关系数据库的数据模型、数据语言和数据理论,其中对关系数据库的标准语言SQL进行了深入介绍。第5章详细讨论了数据库的安全性、完整性、并发控制和恢复等数据库保护技术,并以一个关系数据库产品为例,说明数据库保护技术在实际产品中是如何实现的。第6章讲述了设计数据库应用系统的方法。重点放在设计关系数据库应用系统上。第7章介绍关系数据库产品的发展过程和5个关系数据库产品实例。第8章数据库技术的新进展介绍了数据库技术的发展过程和新一代数据库系统,包括分布式数据库、并
本书主要包括三部分内容,即误差和数据处理基础、试验设计方法与应用和计算机数据处理软件简介。从误差理论入手,分别介绍测量值与误差、偶然误差的分布、误差传递等误差理论中的内容,介绍统计检验、方差分析、回归分析和聚类分析等数据处理方法与应用,介绍提高分析化学准确度的方法及质量控制方法,介绍正交试验设计、多因素序贯试验设计、*化区组和拉丁方设计、析因设计、响应面设计方法与应用,后一章以较大篇幅对现时流行的大型统计软件之一SPSS(Statistical Product and Service Solutions)进行简要介绍,书末附有习题及常用的统计数表。 本书着重介绍基本概念和基本理论,并在此基础上结合专业特点,介绍了各种统计方法在化学化工、医药、环境检测、矿物加工等多方面的应用,本书把误差与数据处理、质量控制和实验设计作为重点。
由周跃南、蔡学军主编的《云计算技术实训教程 (云计算技术与应用课程群高等职业教育十三五规划教材)》根据职业教育的教学特点和培养目标,依托长城云教室和云实训平台,采用 实训任务驱动式教程 方式编写,介绍了云计算基础技能,也补充了一些相关的云计算知识,做到以技能训练为主,理论与实践相结合。全书共分八大任务,包括资源管理、虚拟机管理、网络管理、存储管理、安全管理、用户管理等方面的内容。 本书是中职云计算技术与应用专业及相关专业的云计算技术技能训练教材,也适合高职云计算技术与应用专业使用,还可以作为相关技术人员的培训教材。
本教程中预备知识,介绍项目中实验环境、程序组织方式和管理方法,讲解程序及算法的效率估算方法和分析技巧,描述一般测试技术和调试方法,以及测试数据与测试用例的设计安排技巧;基础实验,首先安排重要的验证性实验,然后设计基于基本数据结构的简单应用实验;综合实验(即课程设计),介绍在一个项目中选择和使用多种基本数据结构的依据和方法,讲解如何有效地将它们融合在一起解决实际的复杂应用问题。 本教程在内容选取及编排顺序上,与严蔚敏老师编著的《数据结构(C 语言版)》(978-7-302-14751-0,清华大学出版社出版)保持一致,可作为高等院校计算机及相关专业数据结构课程的实验教材。
大数据为何如此聪明?它是否会chao越人类理性的控制?本书选取人机关系这一切入点作为分析视角,综合以往哲学界做出的相关论述,阐释了新的概念与理论体系下大数据如何在人机交互中构建和涌现智能。 本书以大数据时代作为总的分析背景,进行了 人机关系的内涵分析 人机关系与心物关系问题的关联 大数据的构建与其意向性的负载 大数据的可建构性研究 人机关系视域下的大数据的伦理问题 等方面的论述,在跟随时代热点的同时也对 心物关系 和 他心知 等经典的哲学问题做出了视角较为新颖的回应。本书知识性、系统性较强,可作为科技哲学领域研究的专家学者进一步从事人工智能哲学和技术哲学等领域研究的参考用书。
本书以SQL Server分析服务为环境介绍数据仓库和数据挖掘应用技术,包括数据仓库和数据挖掘概述、OLAP和多维数据模型、数据仓库设计和SQL Server数据仓库开发实例、关联分析算法、决策树分类算法、贝叶斯分类算法、神经网络算法、回归分析算法、时间序列分析和聚类算法。本书内容翔实,循序渐进地介绍各个知识点,并提供全面而丰富的教学资源,可作为各类高等院校计算机及相关专业 数据仓库和数据挖掘应用技术 和 SQL Server高级应用 课程的教学用书,也适合计算机应用人员和计算机爱好者参考。
为数据挖掘入门级教材,共分8章,主要内容分为三个专题:技术、数据和评估。技术专题包括决策树技术、K-means算法、关联分析技术、神经网络技术、回归分析技术、贝叶斯分析、凝聚聚类、概念分层聚类、混合模型聚类技术的EM算法、时间序列分析和基于Web的数据挖掘等常用的机器学习方法和统计技术。数据专题包括数据库中的知识发现处理模型和数据仓库及OLAP技术。评估专题包括利用检验集分类正确率和混淆矩阵,并结合检验集置信区间评估有指导学习模型,使用无指导聚类技术评估有指导模型,利用Lift和假设检验比较两个有指导学习模型,使用MS Excel 2010和经典的假设检验模型评估属性,使用簇质量度量方法和有指导学习技术评估无指导聚类模型。本书秉承教材风格,强调广度讲解。注重成熟模型和开源工具的使用,以提高学习者的应用能力为目标;
大数据时代的到来,使我们的生活在政治、经济、社会、文化各个领域都产生了很大改变。 数据科学 一词应运而生。如何更好地对海量数据进行分析、得出结论并做出智能决策是统计工作者面临的机遇与挑战。 本书介绍数据挖掘与统计机器学习领域常用的模型和算法,包括基础的线性回归和线性分类方法,以及模型选择和模型评价的概念和方法,进而介绍非线性的回归和分类方法(包括决策树与组合方法、支持向量机、神经网络以及在此基础上发展的深度学习方法)。后介绍无监督的学习中的聚类方法和业界广泛使用的推荐系统方法。除了方法的理论讲解之外,我们给出了每种方法的R语言实现,以及应用Python语言实现深度学习和支持向量机两种方法。本书的一个亮点是后一章给出的两个大数据案例,数据量均在10G左右。我们同时给出了单机版(Python、数据库、R
本书按照简明、易读、突出实用的原则编写,书中所选案例均来自企业PDM项目实际,并在Siemens PLM Software Teamcenter 10平台上加以实现,同时由编者反复论证,全书图文并茂,并配以详尽准确的讲解步骤,使读者能够快速理解并掌握本书案例中所阐述的PDM实施方法和技巧。另外,本书每章都附有相应的练习题,供读者进行练习。读者通过学习本书,可以由浅入深、循序渐进地理解PDM的基本知识和原理,掌握企业PDM实施技能,逐步具有借助PDM平台提高企业研发核心能力,提升产品质量的工程素养。