随着大数据研究热潮的兴起,各种数据可视化图表层出不穷,大数据生动呈现就成为了具有挑战性的工作,随之出现了大量的可视化软件。本书是基于行业占有率比较高的Microsoft Power BI近期新版本所编写的,详细介绍Microsoft Power BI的数据可视化功能,包括数据类型和运算符、软件的安装、连接数据源、数据基础操作、可视化设计原则、可视化图表、自定义可视化效果、报表、仪表板、查询编辑器、运行R脚本、数据不错操作、数据分析表达式、网页流量数据分析、超市运营数据分析、Power BI移动应用和Power BI应用开发等内容。
当前不乏大数据具体技术组件的书籍,但却很少有从大数据平台整体建设和产品形态的宏观角度入手来阐释的。本书重点介绍大数据开发平台服务构建的整体思路和解决方案,内容涵盖一个成熟的大数据开发平台必不可少的各类核心组件:工作流调度系统、集成开发环境、元数据管理系统、数据交换服务、数据可视化服务、数据质量管理服务,以及测试环境的建设等。书中还凝结了作者多年平台建设的实践经验,以及对大数据相关从业人员能力建设和职业规划的宝贵建议。本书适合广大志在深入了解大数据平台建设、开发和应用的在职人员及院校师生。
本书全面系统地讲解如何规划、设计、构建和管理数据仓库/商务智能解决方案。本书介绍在数据仓库开发项目中如何激励用户,在整个企业范围内更好地驱动决策制定,从专业的开发人员获取详细的指导和实践经验。本书内容涉及如何选择恰当的组件、构建企业数据模型、配置数据集市和数据仓库、构建数据流并降低风险,还涉及项目开发中变更管理、数据监理和安全方面的问题。
本书是介绍大数据及其应用的著作,全书分为三篇共11章。上篇(1~2章)描述了大数据带来的冲击和它引爆的思维革命、社会变革,以及数据权在政治、经济、军事上的重要意义。中篇(3~6章),介绍了大数据的数理哲学原理和认识论原理,大数据在科学认识中的作用,以及大数据分析的社会意义。下篇(7~11章),是与大数据研究相关的一些应用成果,包括主动智能搜索、数据挖掘与创新、企业信誉与市场满意度调查、中国市场经济信息评估系统和智慧城市的规划与评估。
本手册主要讲解数据备份、恢复和数据加密解密等方面的内容。本手册从各种不同的用户角度出发,从问题本身着手,从数据恢复与加密技术基本知识,到一般数据文化丢失、损坏的拯救、硬盘系统的数据恢复、特殊文件丢失后的拯救、数据的备份、常用软件的备份和恢复、BIOS和注册的备份与恢复,再到具体的数据加密技巧和数据安全防范措施等。全手册贯穿数据安全这一主题,并从数据拯救与数据加密两个层面对其进行具体阐述、剖析与实用操作的介绍,力图让读者在了解相关知识的基础上,全面掌握各种操作实践与技巧经验,轻松搞定数据安全!
本书是斯坦福大学计算机科学专业数据库系列课程第二门课的教科书。书中对数据库系统实现原理进行了深入阐述,并具体讨论了数据库管理系统的三个主要成分——存储管理器、查询处理器和事务管理器的实现技术。此外,第2版充分反映了数据管理技术的新进展,对内容进行了扩充,除了在版中原有的“信息集成”一章(0章)中加入了新的内容外,还增加了两个全新的章:“数据挖掘”(1章)和“数据库系统与互联网”(2章)。 本书适合作为高等院校计算机专业研究生的教材或本科生的教学参考书,也适合作为从事相关研究或开发工作的专业技术人员的高级参考资料。
本书是一本从理论到实践的全面且细致的企业数据驱动指南,作者见证并献身百度大数据的建设,毫无保留地将成败摸索实践的真实场景进行完整还原,并对近十年大数据从业经验与心得做了归纳和总结,同时详解大数据本质、理念与现状,并围绕数据驱动四环节——采集、建模、分析、指标,深入浅出地讲述企业如何从零到一将完整的数据驱动方案落地,全面展示大数据在各领域内的应用情况与趋势展望。
在本书中,作者将自己多年形成的编程习惯以及阅读既有代码的体验凝练成了编程中的价值观、原则和77种实现模式。 沟通、简单和灵活的价值观应当被所有开发人员所铭记。局部影响、化重复、将逻辑与数据捆绑等原则同样是通用性的指导思想,比价值观更贴近编程场景,在价值观和模式之间搭建了桥梁。在77种实现模式中,每一种模式都覆盖了编写简洁、清晰、易扩展、易维护的代码这一原则的某个方面。它们为日常的编程提供了丰富翔实的参考依据,并告诉大家这些代码如何为降低沟通成本和提高有效产出提供保障。 本书适用于各个阶段的开发者群体。刚刚涉足软件开发领域的新人能够透过大师的眼睛来看待编程,了解编程的价值观与原则;具有丰富经验的资深工程师则可以通过这些模式进行反思,探究成功实践背后的意义。把价值观、原则和开发
本书是一本从理论到实践的全面且细致的企业数据驱动指南,作者见证并献身百度大数据的建设,毫无保留地将成败摸索实践的真实场景进行完整还原,并对近十年大数据从业经验与心得做了归纳和总结,同时详解大数据本质、理念与现状,并围绕数据驱动四环节——采集、建模、分析、指标,深入浅出地讲述企业如何从零到一将完整的数据驱动方案落地,全面展示大数据在各领域内的应用情况与趋势展望。