内容简介 这是一本能为数字化转型企业的数据治理提供全面指导的著作。拥有集团官方出品,得到了用友集团董事长王文京、DAMA中国区主席汪广盛等9位企业界和学术界数字化专家的一致好评 它基于国际主流的数据治理框架和用友多年的数据治理经验,从道、法、术、器4个维度全面、深入展开,不仅有数据治理在战略层面的顶层设计,还有数据治理在执行层面的实施方法,既可以作为数据治理的纲领性指南,又可作为数据治理的实操手册。 从数据治理的战略规划到落地实施,本书将各环节的核心内容凝练为 3 个战略机制、8 项关键举措、7 种技术能力、7 个治理工具 : 数据治理之道:3个战略机制 高屋建瓴地介绍了数据治理的数据战略、组织机制和数据文化。这3个机制能够帮助企业形成数据治理的自我驱动、自我进化、可持续发展和长效运营机制。 数据治理之
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。
在数字中国这一国家战略的牵引下,数据要素和数字化转型的研究和落地如火如荼。数据中台是企业开展数据要素相关实践和数字化转型的关键基础设施,本书在这样的时代背景下,以帮助企业 管好数据、用好数据 为宗旨,内容围绕数据中台架构与建设方法论、数据中台建设流程和内容、数据中台工程化交付、数据中台行业解决方案4个维度全面、深度展开。 本书一共17章,逻辑上分为四个部分: 第1部分 数据中台建设方法与架构设计(第1~3章) 首先,从产生、定义、认知、相关概念、建设方法论、架构等方面对数据中台进行了全面介绍,帮助读者建立对数据中台的清晰认识和理解,熟悉数据中台的建设机制;然后,总结了企业数据应用成熟度评估、数据中台在各个行业的应用场景,以及数据中台的成功要素。 第2部分 数据中台建设内容与运营方法(第4~10章)
本书主要介绍从高维数据中感知、处理、分析和学习低维结构的基本数学原理和高效计算方法,系统地归纳了建模高维空间中低维结构的数学原理,梳理了处理高维数据模型的可扩展高效计算方法,阐明了如何结合领域具体知识或考虑其他非理想因素来正确建模并成功解决真实世界中的应用问题。本书包括基本原理、计算方法和真实应用三个部分:基本原理部分系统地介绍稀疏、低秩和一般低维模型的基本性质和理论结果,计算方法部分介绍解决凸优化和非凸优化问题的有效算法,真实应用部分通过实例演示利用前两部分的知识改进高维数据处理和分析问题的解决方案。本书适合作为计算机科学、数据科学和电气工程专业的高年级本科生和研究生的教材,也适合学习稀疏性、低维结构和高维数据课程的学生参考。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以系统化的实操步骤和丰富的实际案例让读者快速入门Power BI数据分析,掌握Power BI在多个业务领域的实际应用。全书共8章:商业智能与数据分析概述;Power BI简介;数据分析与可视化制作全过程;Power BI数据预处理;Power BI数据建模;Power BI数据可视化;Power BI在线服务;Power BI数据分析实战案例。 本书通俗易懂、循序渐进、内容全面、讲解详细,配备全套数据集、教学课件和学习视频,既适合读者自学Power BI数据分析与可视化,也适合大专院校作为教材,更适合从事销售、产品、电商运营、仓储物流、财务管理、人力资源等岗位的职场人士提升技能。
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。它被国际上许多大学所采用,包括斯坦福大学、耶鲁大学、得克萨斯大学、康奈尔大学、伊利诺伊大学等。
这是一本从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,完整呈现OLAP查询的核心流程和OLAP引擎设计思路,并指导读者形成OLAP引擎设计解决方案的专业技术工具书。本书不仅面向初级读者介绍了OLAP查询的基本原理和Presto使用方法,还从源码级剖析了OLAP引擎核心原理,包括SQL查询解析器、优化器、调度器、执行器等核心组件,并将内容扩展到OLAP引擎的常见高性能优化方案上。全书由浅入深,图文并茂,把晦涩难懂的内容讲解得透彻易懂。本书分为6篇,包括14章。第一篇(第1章和第2章)总体介绍业界常见的OLAP引擎并分析其优劣,讨论OLAP引擎的技术发展趋势及选型方法,介绍Presto背景知识及其使用方法、技巧。第二篇(第3章和第4章)串讲OLAP查询执行的整个过程,并概要性介绍查询解析器、优化器、调度器、执行器等核心模块的工作原理,
本书提供了关于如何在数据治理中建立和运行数据认责工作的适用且可操作的信息和说明,旨在为新任数据专员或数据治理经理提供在数据认责方面所需的知识,以确保其工作有效和高效。本书分为11章,包括:数据认责和数据治理:二者如何结合;了解数据认责的类型;认责管理的角色和职责;实施数据认责;培训业务型数据专员;数据认责实践;数据专员的重要角色;衡量数据认责进度:指标;数据认责成熟度评估;大数据和数据湖认责;基于数据域开展数据治理和认责。 本书内容丰富,理论和实践相结合,易读性和可操作性强,可以作为数据质量管理的入门和进阶用书,还可作为数据治理、信息技术、数据分析等领域人员的参考用书,尤其适合对数据认责感兴趣的读者和负责组织以及运行数据认责工作的人员阅读。
这是一套数据指标体系全流程构建(从规划、框架设计、数据采集加工到应用)方法论与实践指南。它不仅深入浅出地分享了通用的数据指标体系构建策略,还通过多个行业实例展示了具体操作方法。书中从数据采集入手,借助BI工具Superset实践构建过程。本着 一切技术都是为业务服务的 这一宗旨,本书除了包含数据指标体系构建相关内容外,还结合统计学原理及Excel、Python等工具,深入剖析数据指标波动对业务的影响,旨在帮助读者深入理解数据指标与实际业务的底层关联,把数据指标体系落地到业务中。第一篇(第1章):深度解读数据指标体系的基础知识,让读者充分理解数据指标,并掌握构建策略、全流程和方法概要,其中包括数据指标体系分类标准、评判优质指标的4个标准、选择数据指标的4个注意事项、数据指标体系3要素、构建指标体系的7个策略等重
近年来,在所有科学学科和工业环境中收集的数据量和种类都出现了爆炸式增长。如此庞大的数据集给统计和机器学习领域的研究人员带来了许多挑战。本书对高维统计学进行了详尽介绍,重点介绍核心方法论和理论,包括尾部界、集中不等式、一致律和经验过程以及随机矩阵。此外还深入探索了特定的模型类,包括稀疏线性模型、用秩约束矩阵模型、图模型和各种类型的非参数模型。书中提供了数百个工作示例和练习,既适合统计学相关课程使用,也适合统计学、机器学习和相关领域的研究生与研究人员自学。
这是一本能指导企业在数字化转型和数据要素时代通过数据架构用好数据、管好数据、充分发挥数据价值的著作。 从0到1讲解了数据架构的技术栈、方法论与落地实践,揭示了数据架构的底层逻辑,总结了数据架构的核心要素和架构模型,阐述了数据治理、数据资产管理以及数据平台的搭建等全方位的内容,是作者10余年数据工作经验的总结。 本书主要分为五部分: 第一部分:架构基础,对企业架构的组成要素以及流行的企业架构框架进行了总览性质的介绍,数据架构是重点; 第二部分:数据架构基础,详细讲解了数据架构的组成、数据存储、数据调度与消息传输、Lambda架构和Kappa架构以及数据架构的辅助资源组件; 第三部分:数据架构模型,首先介绍了企业内部数据区的划分与内部数据的流向,然后讲解了数据模型的建模策略、步骤和方法,以及维度建模
本书是数据治理领域公认的标准性著作,能为各种类型企业和机构的数据治理提供全面指导。用友集团官方出品,得到了用友集团董事长王文京、DAMA中国区主席汪广盛等9位企业界和学术界数字化专家的一致好评,同时也被中国数据要素高层次人才发展大会(DGBOK)作为指定教材。 它基于国际主流的数据治理框架和用友多年的数据治理经验,从道、法、术、器4个维度全面、深入展开,不仅有数据治理在战略层面的顶层设计,还有数据治理在执行层面的实施方法,既可以作为数据治理的纲领性指南,又可作为数据治理的实操手册。 从数据治理的战略规划到落地实施,本书将各环节的核心内容凝练为 3 个战略机制、8 项关键举措、7 种技术能力、7 个治理工具 : 数据治理之道:3个战略机制 高屋建瓴地介绍了数据治理的数据战略、组织机制和数据文化。这3个机制
这是一套关于数据管理知识体系的专业指南和权威读物,可以有效提升数据管理知识和技能,同时也是数据管理专业人士认证考试的培训教材。 图书简介: 64475 本书分12章重点阐述了数据管理的重要性,数据管理面临的挑战,DAMA的数据管理原则,数据伦理,数据治理,数据生命周期管理的规划及设计,数据赋能和数据维护,使用和增强数据,数据保护、隐私、安全和风险管理,元数据管理,数据质量管理,以及现在应该怎么办,能够帮助企业管理层在了解和执行数据管理的过程中不致迷失在技术术语的迷宫之中。本书可供非数据专业人士、企业管理者、数据行业研究者等读者学习和参考。 65544Y 本书是数据管理协会(DAMA国际)组织众多国际资深专家对过去30多年数据管理领域知识和实践的总结,是市场上综合了数据管理方方面面的一部具有权威性的基础工具书
这是一本用精益思想指导企业以数据为核心进行数字化转型的著作,它将帮助企业事半功倍地找到正确的数字化转型战略、方法与路径。 作者结合自己20余年的实战经验,将精益思想与数据利用深度融合,总结了一套从业务目标出发,以价值场景为抓手,以数据为驱动的精益数据方法论。进一步以该方法论为基础,衍生出精益数据花瓣模型、精益数字化转型三步法、数据驱动的六大能力模型,精益数字化转型共创工作坊,四大精益数据画布,数据驱动的成熟度评估模型,从认知到实践、从工具到方法,从路径到指南,全方位指导企业将数字化转型落地,在数字化转型大浪潮中有里程碑意义。 本书的核心内容围绕精益数据方法论展开,该方法论分为精益数据宣言、精益数字化企业、精益数字化转型路径、精益数据共创工作坊4个模块。 ( 1 )精益数据宣言 包含
内容简介这是一本能指导数据分析师和数据挖掘工程师在AIGC时代快速实现能力跃迁的著作,教会他们使用ChatGPT等AIGC工具,大幅提升数据分析与挖掘的能力和效率。全书围绕Excel、SQL和Python这3大常用的数据分析和挖掘工具展开,从方法和实践2个维度系统讲解了如何使用ChatGPT和Bing Copilot等AIGC工具来辅助提升效率。全书一共8章,内容可以分为四个部分:1.AIGC工具使用和Prompt撰写首先详细介绍了数据分析与挖掘能用到的各种AIGC工具的使用方法和注意事项,然后全面讲解了如何面向数据分析与挖掘场景构建高质量的Prompt,包括大量的方法和最佳实践。2.AIGC辅助Excel数据分析与挖掘方法角度,详细阐述了AIGC工具如何辅助Excel数据分析与挖掘,包括数据集生成、数据管理、数据处理、数据分析和数据展示等;实践角度,通过RFM分析、时间序列分析和相关性分析等3个方面的案
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
点云库(Point Cloud Library, PCL)是在吸收了点云相关研究基础上建立起来的跨平台开源库,可在Windows、 Linux、 Android、 Mac OS X,以及大部分嵌入式实时系统上运行,目前已经得到了广泛应用。本书为应用点云库技术的指导图书,旨在帮助读者对其以快速、有效的方式上手操作并实际应用,*大限度地节省读者的入门与技术提升时间。书中首先介绍了三维点云处理的相关理论知识,之后则重点从实际的点云处理功能模块出发,通过大量具体的实践案例介绍如何使用该项技术解决实际问题。 本书可作为计算机图形学、机器人、遥感测量、虚拟现实、人机交互、CAD/CAM逆向工程等领域的科研人员进行产品开发、科研项目、课题项目时的参考指南,也可作为大中专院校及培训班相关专业师生的学习手册。
算力、数据、AI已经成为驱动当今社会技术发展的三架马车,而算力也从传统的超级计算向云超算的方向发展。本书旨在探讨当前超级计算与云计算的融合而给算力带来的新的发展,介绍当前在算力领域的一些实践和探索,从理论到工程,帮助读者了解超级计算的关键技术与未来发展,从而更好地应用和发展高性能技术。
本书是一本数据治理领域的实战型手册,共8章,内容包括:数据治理的基本概念、数据治理的价值、数据治理的核心职能、实施数据治理的前提、实施数据治理的五个阶段、数据治理的十大核心能力建设、数据治理工具与技术、数据治理行业实践案例。本书语言通俗易懂,体系完整,案例丰富,系统全面地介绍了数据治理的目标、价值、方式、方法、工具等相关知识,可以帮助读者快速理解数据治理的概念,认识数据治理的架构,掌握数据治理的基本方法。 本书读者对象主要是CEO、CDO、CIO、CTO,以及数据治理、企业数字化转型领域的相关管理者和项目负责人。本书也适合作为高校数字经济、数据科学与大数据技术、大数据管理与应用等专业的数据治理相关课程教材。
本书是一本探索如何应用图思维和图技术解决复杂问题的书籍。该书针对有兴趣学习如何使用图数据提升工作水平、解决困难问题的实战从业者。 该书涵盖了与图数据相关的广泛主题,包括图思维、图数据模型和查询语言,讨论了如何将图数据应用于社交网络、物流和网络安全等领域的问题解决方案。 此外,该书还提供了实践指导,包括工具和框架的推荐、设计有效图数据模型的建议,以及如何使用图数据生成洞见和做出明智决策的建议。 总的来说,本书是任何希望学习如何使用图数据解决复杂问题和获得新的工作洞见的人的优质资源。
内容简介 这是一本能指导企业对全渠道(公域和私域)用户进行画像并实现自动化营销和运营的实战性著作,是作者多年大数据研发和用户画像经验的总结。本书将帮助企业提高数字化营销和运营的水平,通过用户画像提升业绩。 本书核心内容围绕App、企业微信、公众号、小程序、抖音、小鹅通6大用户渠道展开,从系统集成、数据接入、产品功能、开发实现、应用场景等多角度详尽地阐述了如何进行全渠道的用户画像并构建数字化的客户数据平台,实现营销和运营的数字化和自动化。 除此之外,本书还介绍了全渠道用户画像的整体构建思路,各种营销自动化工具的应用场景、技术实现方案、使用方法、工程案例以及在全渠道画像平台上的实现,以及私域引流和触点相关的内容。 这本书既有渠道集成技术方案实现、用户画像功能开发、客户数据平台搭建等技术方
本书介绍了数据工程生命周期,并展示如何组合运用各种云技术来满足下游数据消费者的需求。本书分为三部分:第一部分介绍了数据工程的定义、数据工程的生命周期、合理的架构设计和帮助技术选型的框架;第二部分深入介绍了数据工程生命周期的每个阶段 数据生成、存储、获取、转换和服务;第三部分讨论了数据工程的重要部分 安全和隐私。附录还介绍了与处理数据文件和评估数据系统的性能有关的序列化和压缩,以及云网络。本书适合软件工程师、数据科学家、数据工程师和数据分析师等相关技术人员阅读。
Elasticsearch是一款高性能的文档数据库,广泛应用于分布式搜索和分析引擎等相关领域,本书首先介绍了数据建模的通用设计原理,然后针对Elasticsearch 介绍了文档数据库建模的特点和要求,例如和设计模式有关的实现、注意事项,以及实践过程中的注意点等。 本书的两位作者,一位是资深的Elasticsearch 专家,一位是建模领域的大师,联合为读者呈现了这本著作。如果你是一名希望扩展Elasticsearch 建模技能的读者,或者是一名了解Elasticsearch 但需要提高模式设计技能的从业人员,推荐阅读本书。