本书是算法竞赛的入门和进阶教材,包括算法思路、模板代码、知识体系、赛事相关等内容。本书把竞赛常用的知识点和竞赛题结合起来,讲解清晰、透彻,帮助初学者建立自信心,快速从实际问题入手,模仿经典代码解决问题,进入中级学习阶段。 全书分为12章,覆盖了目前算法竞赛中的主要内容,包括算法竞赛概述、算法复杂度、STL和基本数据结构、搜索技术、高级数据结构、基础算法思想、动态规划、数学、字符串、图论、计算几何。 本书适合用于高等院校开展的ICPC、CCPC等算法竞赛培训,中学NOI信息学竞赛培训,以及需要学习算法、提高计算思维的计算机工作者。
《深入浅出算法竞赛(图解版)》是为帮助读者理解基本的算法思想和编写高效的解决问题的程序而编写的。全书共6章,第1章概述了算法与算法竞赛的知识;第2章介绍了计算机程序解决问题的基本方法 穷举算法与贪心算法;第3章讲解了随机算法,如何利用概率与期望优化算法的效率;第4章讲解了AI的思维模式 搜索算法,如何用更灵活的方式遍历每一种可行解;第5章讲解了动态规划,如何通过状态间的转移,巧妙地规划解;第6章讲解了将大事化小、小事化了的分治算法,如何将问题拆分为易于解决的小问题。 本书配备了大量的算法竞赛试题,使用算法竞赛常用的C 语言编写。同时,本书不拘泥于算法竞赛,在第2 ~ 6章的后每一节给出一段阅读材料,介绍算法有趣的应用,帮助读者拓宽思维。 本书的讲解避开了繁琐枯燥的理论,采用浅显易懂的语言和大量生动
为了帮助有一定编程基础的人群进一步提升自己的Python编程水平及应对编程工作的压力,《算法实例精讲 Python语言实现》全面讲解了9种经典算法理论、65个典型实例的算法设计与分析以及Python语言的代码实现过程。首先从Python数据结构基础入手,然后讲解了各种算法,包括排序算法、动态规划算法、双指针算法、深度优先搜索算法、广度优先搜索算法、贪心算法、递归算法、分治算法、回溯算法等,*后归纳了数据结构中的一些经典问题。这既能帮助初学者理清算法的基本结构,融会贯通地掌握好算法基础知识;又能帮助有一定工作经验的读者巩固基础,进一步提升编程水平;也能帮助求职者为未来面试与工作做好必要的知识储备。 《算法实例精讲 Python语言实现》理论基础与实例应用相结合,实例分析与图解相结合,每个实例均设有详细的思路解析和代码实现,
本书理论结合实践,通过综合运用图、表、文字、代码、解析等多种形式深入浅出地讲解了算法思想、算法结构设计与实践应用,并为大部分章节的算法提供了有趣的竞赛真题及解析,帮助读者学习算法的核心思想,提高实践动手能力。 全书共9章,内容包括算法概述、递归算法与分治法、动态规划算法、贪心算法、搜索算法、网络流算法、随机化算法、群体智能优化算法及算法竞赛真题自测与解析。 本书配有丰富的在线资源,包括在线课堂、在线真题自测、在线考试、在线自动判题、在线解题视频等线上资源,并提供教学课件、课堂手册、课后习题参考笞案、实例源代码等教学资源,方便教师投课和开展教学活动。 本书适合作为计算机科学与技术、软件工程、人工智能、数据科学与大数据分析等专业大学生、研究生的教材。也可以作为数学建模和程序设计竞赛
《中学生计算机程序算法入门:例题精析与训练》精选Atcoder竞赛中的训练题目,初步探讨了CSP-J组认证中常见的简单算法和计算机数学问题,内容涵盖排序、枚举、模拟、二分、贪心、搜索、数据结构、动态规划、数论、组合数学等多个领域,以及C 中STL的高效使用方法。这些内容是算法竞赛中不可或缺的知识,旨在帮助读者培养计算思维,初步掌握简单算法问题的思维方法和实现技巧。
算法是个有趣的东西 针对某个问题设计算法的时候,不会的人感觉像 大海捞针 ,而会的人则感觉像 一苇渡江 。高手的头脑里都有一张 算法地图 ,算法之间不是孤立的,而是彼此连通的。算法之间的内在联系有很多,但挖掘到根源上,就是递推与递归两种思想。本书从深度解析递推和递归这两个基本算法思想开始,用它们贯穿起了《算法导论》中的几十个经典算法,包括排序、查找、回溯、贪心、分治、动态规划、图算法等。 本书成稿自作者的教案,秉承了作者一贯的风趣幽默又不失严谨的写作风格,同时融入了学习心理学和认知科学的实践原理。作者的诸多学生在参加完以本书内容为蓝本的集训后进入了微软、脸书、亚马逊、领英、甲骨文等公司,所以本书是经过千锤百炼的一线教学成果。本书适合于所有想通过学习算法来精进自己编程能力的读者。为了倾
智能优化算法在解决大空间、非线性、全局寻优、组合优化等复杂问题方面具有独特的优势,因而得到了国内外学者的广泛关注,并在信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域得到了成功应用。本书介绍了8种经典智能优化算法 遗传算法、差分进化算法、免疫算法、蚁群算法、粒子群算法、模拟退火算法、禁忌搜索算法和神经网络算法的来源、原理、算法流程和关键参数说明,并给出了具体的MATLAB仿真实例。对于要用这些算法工具来解决具体问题的理论研究和工程技术人员,通过本书可以节省大量查询资料和编写程序的时间,通过仿真实例可以更深入地理解、快速地掌握这些算法。
MATLAB计算机视觉与机器认知 这是一本用 MATLAB演示计算机视觉原理的基础理论著作,从*初等的视频图像转换入手,层层递进,理论与实战并重但侧重于实战,借助混合编程及图形用户界面(GUI)设计,以简洁的方式展现了有一定挑战性的视频识别、目标跟踪、行为分析等关键视觉技术;同时扩展到机器认知层面,介绍仪器字符识别、机器故障诊断等有趣的应用,使读者可以在*短的时间内完成入门、进阶、精通与实战的跨越。 本书主编、副主编均在中国科学院、 985工程 大学国家重点实验室从事智能算法设计与应用的研究,部分理论功底扎实的优秀研究生也参加了主要章节的编撰。 本书既可作为算法工程师、高校教师和广大科技工作者的参考资料,也可作为高校相关专业的研究生教材和高年级大学生毕业设计的工具书。
本书是算法竞赛的入门和进阶教材,包括算法思路、模板代码、知识体系、赛事相关等内容。本书把竞赛常用的知识点和竞赛题结合起来,讲解清晰、透彻,帮助初学者建立自信心,快速从实际问题入手,模仿经典代码解决问题,进入中级学习阶段。全书分为12章,覆盖了目前算法竞赛中的主要内容,包括算法竞赛概述、算法复杂度、STL和基本数据结构、搜索技术、 数据结构、基础算法思想、动态规划、数学、字符串、图论、计算几何。本书适合用于高等院校开展的ICPC、CCPC等算法竞赛培训,中学NOI信息学竞赛培训,以及需要学习算法、提高计算思维的计算机工作者。
物联网、人工智能、大数据解析和机器人工学等,日新月异的科学技术每天都在给人类的生活带来重要的变化。身处这样的一个时代,我们面临一个选择,即怎样面对日新月异的科学技术的发展。在这样的变化中,是作为被动的一方,还是成为主动的一方,抑或是站在时代的前端成为创造的一方?这将取决于我们的选择。只要我们不想成为被动的一方,掌握编程的基本技能就是必不可少的。 本书从讲解学习编程的益处出发,向读者介绍了*好的学习编程的方法。紧接着,介绍了主要编程工具的概要和特点,包括 编程一小时 点灯机器人 Scratch 编码猴 等编程工具。了解这些编程工具后,书中又教读者使用 Scratch 从头到尾制作了一个游戏,从而提高他们的编程技能。*后,作者分析了各编程语言的特点,并为读者学习编程提供了真正有益的指导。本书讲解由浅入深,
智能优化算法在解决大空间、非线性、全局寻优、组合优化等复杂问题方面具有独特的优势,因而得到了国内外学者的广泛关注,并在信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域得到了成功应用。本书介绍了8种经典智能优化算法——遗传算法、差分进化算法、免疫算法、蚁群算法、粒子群算法、模拟退火算法、禁忌搜索算法和神经网络算法的来源、原理、算法流程和关键参数说明,并给出了具体的MATLAB仿真实例。对于要用这些算法工具来解决具体问题的理论研究和工程技术人员,通过本书可以节省大量查询资料和编写程序的时间,通过仿真实例可以更深入地理解、快速地掌握这些算法。
图像去噪、去模糊、修补、超分辨率和压缩感知重建等图像反问题的求解在工程实践中有重要的应用价值, 也是近些年来图像处理领域的前沿热点。本书着重对图像反问题病态性的数值分析和基于算子分裂的图像反问题求解方法进行了较系统的研究和介绍。全书共分6章, 内容包括预备知识、图像反问题病态性数值分析及正则化方法、自适应正则化参数估计和基于算子分裂的图像反问题并行求解方法等。本书中的研究方法虽以图像去噪、去模糊、修补和压缩感知重建等复原类问题为例, 但也可推广至图像分割、高光谱分解、图像压缩等图像处理问题当中。本书适于作为高等学校教师及研究生的参考教材, 或供从事图像处理的科技工作者自学或进修选用。
本书是一部系统论述基于生物行为模型的智能优化算法案例与实现的著作。全书共分为6章:第1 章介绍生物启发式计算的研究背景, 对传统生物启发式计算方法进行了概述;第2章介绍将层次型信息 交流拓扑结构引入人工蜂群觅食模型中的内容, 提出基于层次型信息交流机制的多蜂群协同进化优化算 法, 使用该算法在搜索过程中能够维持整个种群多样性的群落级进化, 从而克服传统单层生物启发式优化 模型的 早熟收敛 问题, 并进一步提升算法的收敛速度与收敛精度; 第3章借鉴微生物学**研究成果, 从能量变化角度对细菌构建基于生命周期的优化模型, 进一步介绍基于生命周期的菌群觅食自适应优 化算法;第4章研究如何将改进的蜂群觅食优化算法用于求解聚类问题, 将基于层次型信息交流机制 的多蜂群协同进化优化的聚类优化算法用于教学评价体系;第5章研究如何将基于 L
本书基于Python语言介绍了数据结构与算法的基本知识,主要内容包括抽象数据类型和Python面向对象程序设计、线性表、字符串、栈和队列、二叉树和树、集合、排序以及算法的基本知识。本书延续问题求解的思路,从解决问题的目标来组织教学内容,注重理论与实践的并用。