《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
随着计算科学的快速发展,人工智能已为我们大家熟知。2017 年国务院正式印发《新一代人工智能发展规划》,明确了人工智能的国家战略地位,关于人工智能的科普、技术普及读物也已出现,但符合少年儿童认知的人工智能科普读物却一直是个空白。本书是面向少年儿童的人工智能科普读物,用轻松有趣的笔触和明确简洁的形式介绍人工智能的历史、现状及未来。 本书写给6 岁以上、13 岁以下的青少年读者,深入浅出地介绍了人工智能的发展历史、人工智能的主要研究方向、技术实现流程及人工智能与未来社会的关系探索等。本书从科普和青少年教育的角度出发,培养孩子们对人工智能乃至新科技的认知,目的是让孩子们了解人工智能知识,建立正确的科技价值观和科学的方法论,为将来人工智能的研究和应用做好准备。
当前,人工智能作为一项引领未来的颠覆性战略技术,已在经济、军事、社会等各领域广泛用,成为世界各国科技竞争和战略布局的重中之重。本书以人工智能的“起点、拐点、奇点、看不见的终点”为线,突出认知新思维、技术新发展、应用新构想,从人工智能前世今生、思维方法、大模型、机器学习、感知认知、人机交互、脑科学、机器人,以及无人智能作战和未来发展等多维度、多层次、多领域进行全面深入剖析。
本书旨在介绍人工智能领域基础知识和核心概念,较为全面地介绍目前人工智能的主流概念、理论、方法、技术及应用等内容。全书共21章,分为三部分:第一部分从背景介绍到基础知识,对人工智能进行全面概述;第二部分具体介绍作为人工智能核心的机器学习关键技术,包括监督学习、非监督学习和集成学习等算法与模型;第三部分聚焦人工智能算法与模型在不同领域的应用,并附带应用案例的代码讲解。 本书结构合理、层次分明、条理清楚、理例结合、图文并茂、深入浅出、详略得当、纸电结合、易读易懂、易教易学。
AI技术突飞猛进,智能革命风起云涌,正在将人类社会推进到全新的智能社会。在以机器人劳动、智能治理、加速、后真相等为重要特征的智能社会中,人类既能享受到物质极大丰富的富裕生活,同时也面临着诸多科技风险和社会风险。关于AI的各种问题不仅为越来越多的人所困惑、思考,亦成为试图把握时代精神的当代人不可能绕开的问题。 《智能革命后的世界:AI技术与人类社会的命运》运用跨学科的理论、方法、观点和案例,深刻剖析了当前智能革命发展的趋势,并用通俗易懂、简洁明快的语言对“智能革命后的世界”进行总体把握和全面刻画。尤其聚焦于未来智能社会的数字 、智人自我改造、AI养老与机器情感、机器人劳动与人类失业、AI科研与后真相状况、人类道德新变化、AI技术治理社会以及避免AI文明危崖等与每个人息息相关的议题。 本书
本书主要探讨现代社会的算法如何生产社会智能问题。作者埃琳娜 埃斯波西托教授沿袭其导师尼可拉斯 卢曼的 社会沟通 理论,指出机器学习等数字技术不是人工智能,而是 人工沟通 。在算法和人类智能之间进行这种类比是一种误导。如果机器对社会智能有贡献,不是因为它们学会了如何像人类一样思考,而是因为人类学会了如何与它们进行沟通。 人工沟通 意味着人类的沟通伙伴可能不是人类,而是算法。鉴于算法在社会生活的各个领域中的广泛使用,本书深入探索了人类与算法互动、在线网络列表的激增、数字本文分析中的可视化、算法个性化与数字画像、数字记忆与被遗忘权、遗忘图像、算法预测、法律犃犐的透明度与解释等数字社会的前沿问题。在Chat GPT热潮持续升温的当下,相信本书在帮助中国读者准确了解当代数字社会的同时,也能促进我们对数字
如今,人工智能的迅速发展给人们的日常生活和工作带来了巨大的影响。要想让人工智能朝着人类智能的方向持续迈进,我们就应该让我们创造的硅基大脑像人类大脑一样有感知、有记忆、有决策、有行动。问题的难点在于,人类大脑由约1000亿个神经元构成,神经元间交流复杂,大脑掌管认知、意识,影响我们生活的方方面面。我们如何破解如此庞大的复杂系统的运行机制呢? 在《心智的10大模型》中,计算神经科学家格蕾丝·林赛深入探讨了数学模型在理解大脑中的关键作用。书中通过10个数学模型,从单个神经元到复杂的神经环路,再到整个大脑的行为控制,逐步展示了数学工具如何帮助科学家理解和描述大脑的决策、感觉处理、记忆等过程。本书不仅是一部科学史,也是一本前沿的神经科学指南,为读者呈现了神经科学与数学、计算机科学的跨学科融合,启
人工智能已经全面进入艺术领域,与许多艺术门类如电影、绘画、舞蹈、雕塑等都有不同程度的融合发展。本书涉及各艺术门类、计算机、软件工程、仿生科学等领域,立足社会需求,面向未来发展,着重解答3个问题:人工智能现在经典的艺术应用有哪些?其原理是什么?未来人工智能与艺术的融合角度和方式是什么?本书采用总分总的结构,首先介绍人工智能与艺术的历史渊源;其次按照文学、绘画、音乐、电影、戏剧、舞蹈、建筑、游戏、雕塑9个类别分别叙述人工智能的典型案例、原理和未来发展方向; 总结人工智能与艺术融合的一般范式、现存问题和可能的发展路径。 本书适合社会大众、不同门类艺术专业人员和研究者从广度、深度、专业延伸的角度掌握人工智能与艺术的发展脉络。本书也适合作为信息艺术院校、人工智能交叉学科、新文科等相关
本书对所有主要的深度学习方法和最新研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前最新成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时
本书对所有主要的深度学习方法和**研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前**成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时各章内
本书是新一代人工智能实践系列教材之一,是一本系统介绍人工智能基础知识和基本原理的入门书籍,从经典人工智能入手, 介绍知识表示、确定性推理、不确定性推理、专家系统和演化算法等。同时, 也介绍了典型机器学习和深度学习的学习框架和方法, 如决策树、支持向量机、卷积神经网络、循环神经网络和生成对抗网络等。 另外,本书以Pytorch、sklearn等为基础通过实践项目巩固人工智能的基础知识, 帮助读者从理论和实践中提高人工智能的知识水平。 本书适合作为高等学校人工智能专业及计算机类相关专业的本科生、研究生学习人工智能的教材,也可作为从事人工智能领域或对人工智能感兴趣的读者的参考书。
这是一本系统讲解GAN理论、模型、常见问题,并为视觉和语音领域的大部分应用场景提供GAN解决方案和综合实例的著作。 作者在人工智能领域积累颇深,这本书得到了前阿里巴巴达摩院华先胜和中国科学院自动化所刘成林的推荐。前4章有针对性地讲解GAN的理论,帮助读者夯实基础;后8章讲解应用,用大量经典的模型和9个案例,为8个应用场景提供了GAN解决方案。 第1~4章首先介绍了无监督生成模型、显式生成模型、以GAN为代表的隐式生成模型等各种生成模型的理论和原理;然后讲解了GAN中的目标函数及其数学原理、GAN在训练中的常见问题和相应解决方案、GAN的评价指标和可视化等; 第5~12章分别讲解了图像生成GAN的各类模型与应用、图像翻译GAN的各类模型与应用、人脸图像编辑GAN的各类模型与应用、图像质量增强GAN的各类模型与应用、三维图片与
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
汉语是一种声调语言,声调在辨意中发挥着重要作用,因此声调的特征研究是汉语方言研究的重要部分。本书介绍了多种智能算法在汉语方言单字调识别中的应用,为汉语方言的语言研究学者提供了新的研究方法和思路。
本书对知识这一理解和驱动世界发展的隐形力量进行了深入研究,对其含义、发展机制、其对于个体意识和社会价值的塑造,以及其在人工智能领域的进展进行了全面剖析。是一本 扎实的,研究知识的本质与其重要作用的学术书籍。 本书共由三部分组成。 部分由三章组成,将知识作为一种真实有用的信息,以及计算机和人类发展和管理知识的过程呈现出来。 第二章确定了关于知识的三个基本问题:目的论、本体论和灵知论。第三章概述了信息学的基本概念。用 简单的术语解释了知识如何被定义为信息,并讨论了它的发展和应用所带来的关键问题。第四章讨论了知识发展的原则,以及这些原则产生的限制。 第二部分由两章组成,分析了计算过程和物理现象之间的关系,以及机器和人类对知识的生产和应用。 第五章考察了信息学和物理学之间的关系
无创式脑调制(noninvasivebrainmodulation,NBM)是一种采用电场或磁场调节神经系统活动的技术,已成为诊断、康复和治疗神经精神疾病的一个有效手段,同时也是研究脑生理、结构和功能的常用工具。本书以作者多年来相关研究工作为基础,结合NBM技术与神经计算领域的**发展撰写而成。内容深入浅出,在介绍电场神经调节效应和神经系统建模的基础上,从非线性动力学角度剖析了神经元的放电起始过程,系统阐述了电场对放电起始动态的影响规律,深入探讨了电场调制神经活动的生物物理机制。
本书主要内容分为四部分:①人工智能算法基础;②数据基础与表征;③人工智能与药物设计;④程序代码。通过系统介绍人工智能算法,阐述不同算法的原理、应用场景和算法特点,为后续介绍人工智能与药物研发的交叉内容提供基础。全书以药物研发流程为脉络,针对每个人工智能算法融入的关键步骤,首先介绍药物设计基础原理与现存挑战,进而系统性回顾介绍人工智能算法在该研究方向上的进展情况,每部分都穿插介绍已有的交叉应用实例,以利于加深对图书内容的理解与灵活运用。提供原始的代码文件,为读者开展实践应用提供直接资料。