Josh Starmer博士在YouTube的账号 StatQuest 视频总观看量突破7000万次(2024年11月统计的数据),他帮助全世界各行各业的人赢得数据科学竞赛、通过考试、顺利毕业、成功求职或实现晋升,因此被大家誉为 硅谷的守护神 。他那独特的图文表达形式和幽默的语言风格深受观众喜爱,这本《StatQuest图解机器学习》结合了他创新的视觉呈现方式,深入浅出地阐释了机器学习的基础和高阶知识,是一本轻松理解机器学习的 漫画书 。本书前3章着重介绍了机器学习的整体框架和核心思想,自第4四章起,逐一探讨了各种机器学习算法:从基础的线性回归(第4章)和逻辑回归(第6章)到朴素贝叶斯(第7章)和决策树(第10章),最后介绍了支持向量机(第11章)和神经网络(第12章)。随着读者学习的深入,第5章、第8章和第9章分别介绍了机器学习的进阶知识和实用技巧,如梯度下
AI狂奔的时代,当同事还在为PPT排版熬夜、为数据报表抓狂时,懂DeepSeek的人早已关灯下班 这不是魔法,而是工具碾压的硬核差距! 本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商业计划 专业攻坚 ,都可以用DeepSeek的 理工科大脑 与 深度思考 功能精准破局。 翻开本书,让DeepSeek替你完成80%重复劳动,用AI替你 伪勤奋 斩获升职加薪,把 加班 变成传说,在AI浪潮中率先抢占职业高地!
这是一本既适合个人,又适合企业的DeepSeek保姆级教程,它能指导我们每个人零基础轻松掌握DeepSeek的高效使用方法,成为使用DeepSeek的高手,走在时代的前列。 作者有多年的创业经验,是AI应用领域的资深专家,是多家500强企业的AI实施顾问,为数百家企业提供了AI应用方面的培训和咨询,本书内容是基于这些经验的总结。本书得到了北青传媒总裁、阿里云副总裁、快手副总裁等多位专家高度评价。 从DeepSeek使用方法到提示词技巧,从DeepSeek在办公、学习、生活等领域的应用,到各个行业的DeepSeek解决方案,本书结合7余个具体的场景,讲解了大量的实用技巧和解决方案。 掌握本书内容,你将收获一下知识: (1)DeepSeek的详细功能和使用方法; (2)DeepSeek的提示词写法和技巧; (3)DeepSeek在邮件、会议纪要、PPT、Excel数据处理、合同检查、翻译、行程规划等8个
本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。
本书将从强化学习最基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼最优公式,之后会推广到基于模型的和无模型的强化学习算法,最后会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从最基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们更深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。
本书主要利用AI发现和构建有效的量化策略,旨在使读者掌握AI在量化策略中的应用。随着2023年大模型的崛起,投资者需要学会与AI共生,建立个人知识库和灵活应用提示词工程(Prompt Engineering),让AI协助寻找论文、理解论文、编写代码、构建模型、训练模型、生成信号、特征识别、投资组合优化和参数优化等。AI在高质量人群的量化行业中将得到广泛应用和发展,让更多读者能掌握编程和量化技能,从而在AI的帮助下快速开发出适应市场的量化策略。 本书共10章,涵盖量化投资中AI的历史演进、投研平台的构建、量化策略的开发流程、策略分类和介绍、市场主流策略开发、策略回测和实盘准备等内容。书中提供丰富的示例代码,具有较强的实践性和系统性,并配有高等数学、金融工程和计算机科学技术等前置知识,以帮助读者深入理解量化投资策略。 本书适合量
《DeepSeek大模型高性能核心技术与多模态融合开发》深入剖析国产之光DeepSeek多模态大模型的核心技术,从高性能注意力机制切入,深入揭示DeepSeek的技术精髓与独特优势,详细阐述其在人工智能领域成功的技术秘诀。《DeepSeek大模型高性能核心技术与多模态融合开发》循序渐进地讲解深度学习注意力机制的演进,从经典的多头注意力(MHA)逐步深入DeepSeek的核心技术 多头潜在注意力(MLA)与混合专家模型(MoE)。此外,《DeepSeek大模型高性能核心技术与多模态融合开发》还将详细探讨DeepSeek中的多模态融合策略、技术及应用实例,为读者提供全面的理论指导与应用实践。《DeepSeek大模型高性能核心技术与多模态融合开发》配套所有示例源码、PPT课件、配图PDF文件与读者微信技术交流群。 《DeepSeek大模型高性能核心技术与多模态融合开发》共分15章,内容涵盖高性能注
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络的优化与应用、EM算法及其应用、集成学习的过拟合现象研究、度量学习及其应用。书中包含简答题、计算题和编程题,涵盖不同难度级别,机器学习初学者可以通过这些习题深入了解和巩固教材的关键概念,对机器学习有一定基础的读者也可以通过习题发现对一些知识点不同角度的解读,为后续机器学习的深入研究打下基础
工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
本书分为两大部分:di一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
ChatGPT 是目前市场上最为优秀的 AI 工具之一,它以强大的信息整合、知识链接、编程和语言理解等能力惊艳了全球,被广泛用于各行各业,以提高生产力。那么如此强大的 AI 工具该怎样使用呢? 《ChatGPT 实操应用大全(全视频 彩色版)》应运而生,这是一本关于 ChatGPT 全场景使用秘籍,为读者呈现 ChatGPT的 150种不同的使用方法和技巧,带读者深度解锁 ChatGPT的功能,释放出无限的创造力。它能够帮助用户轻松解决各种实际问题,极大地提高工作效率和生产力。不论是短视频内容创作、数据分析、日常办公、论文写作、金融投资,还是翻译、写代码等任务,本书都能够满足用户的需求。如果想要更好地利用 ChatGPT 功能,就阅读本书。本书主要涵盖 ChatGPT 的注册与登录、基本功能的使用、提示词用法、150 种应用场景、参数指令与 API 开发以及ChatGPT插件等内容,内容通
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停留在浅尝辄止,也不相信宣称的人人都能用ChatGPT赚钱。
本书在状态空间理论的统一框架下系统深人地介绍了预测控制的滚动优化原理、算法和闭环性能。首先通过本科生熟悉的状态空间模型建立起预测控制从原理到算法和性能分析的每一个细节。然后,介绍了阶跃响应模型和脉冲响应模型的状态空间描述,给出了与传统卷积描述的一致性。据此,遵循预测控制的三个步骤“预测系统未来动态-求解优化问题-解的第一个元素作用于系统”和“滚动时域、重复进行”机制推导了无约束的动态矩阵控制(DMC)和模型算法控制(MAC),分析了闭环性能,给出了闭环稳定性的分离原理。然后,依次讨论了时滞预测控制、约束预测控制、非线性预测控制,以及稳定性和鲁棒性研究的最新进展。最后,介绍了基于滚动优化原理的滚动时域估计和基于现场可编程门阵列(FPGA)的预测控制器实现技术。
本书以大学生村官小L的故事为线索,深入浅出地探讨经典机器学习的基础知识、深度学习的基本原理,以及形形色色的生成式模型。通过本书的学习,读者不仅可以了解AI大模型的核心技术,还能深刻理解其在实际场景中的应用与价值,甚至可以自己动手设计和构建适用于特定场景的AI模型。衷心地希望本书能成为读者探索AI世界的钥匙,能引领大家走向更加广阔的未来。
人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。
本书的目标,是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松地掌握机器学习的基本知识,从而拥有相关的实战能力。 本书通过AI 小白 小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。本书所有案例均通过Python及Scikit-learn 机器学习库和Keras 深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。 本书适合对AI 感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人,用以入门机器学习领域,建立从理论到实战的知识通道。
内容简介本书是AI时代法律人和法律机构的生存指南,它从业务角度全面总结了法律人如何使用AI提升工作效率,以及律所等机构如何使用AI提升运营效率;它从技术角度详细讲解了如何构建法律行业的垂直大模型、知识库和智能体。它由中国领先的法律科技企业新橙科技(iCourt)官方出品,是iCourt的CEO带领团队核心成员总结的iCourt在AI领域的理论研究成果和实战经验。全书内容分为五个部分:第一部分(第1章) AI带来的影响与应对措施从法律人的视角介绍了AI大模型的基础知识,以及AI在法律领域的应用趋势和场景。从宏观角度深入探讨AI对法律行业带来的积极影响和消极影响。最后部分为法律行业从业者和法律机构应对 AI 带来的变革提供相应策略。第二部分(第2~6章)AI 助力法律人提升工作效率围绕类案检索、案情分析、法律咨询、法律文书写作、合同审查等法
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
本书是微软推出的 AI for Beginners 系列课程的中文版,专门为希望进入 AI 领域的初学者设计。本书提供为期 12 周、共24 堂课的系统学习路径,每堂课配有 Jupyter Notebook 实践笔记本,附带测验与练习,中文版还在 Gitee 上托管了课程相关的 Notebook,便于读者在实践中掌握人工智能的核心概念和应用。 书中涵盖如下内容:AI 历史与发展,探索人工智能从符号到深度学习的演变;神经网络与深度学习,使用 TensorFlow 和 PyTorch 框架讲解神经网络的基本原理及应用;计算机视觉与自然语言处理,学习图像识别和文本分析技术;其他 AI 技术,如遗传算法和多智能体系统等。 本书适合 AI 爱好者、初学者,以及相关专业的学生、老师阅读,不需要复杂数学背景即可轻松入门,通过实战项目提升操作能力。
本书系统地介绍了机械手控制的几种先进设计方法,是作者多年来从事机器人控制系统教学和科研 工作的结晶,同时融入了国内外同行近年来所取得的**成果。 本书主要以机械手的控制为论述对象,共包括16章内容,分别介绍PID 控制、神经网络自适应控制、 模糊自适应控制、迭代学习控制、反演控制、滑模控制、自适应鲁棒控制、末端轨迹及力的连续切换滑模控 制、重复控制的基本原理及设计、机械手容错控制、基于事件驱动的机械手反演控制、基于输入延迟的机械 手控制、基于执行器量化的控制、基于控制方向未知的控制和多智能体系统一致性控制的设计与分析。每 种方法都给出了算法推导、实例分析和相应的MATLAB仿真设计程序。 本书各部分内容既相互联系又相互独立,读者可根据自己的需要选择学习。本书适合从事生产过程 自动化、计算机应用、机械电子和电气
马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。