本书作者GabrielHallevy提出并阐述了一个关于人工智能技术和机器人刑事责任的总体理论,该理论涉及到法律的方方面面,涵盖了制造商、程序员、用户和其他所有相关的实体。他从现有的刑法中类推出一系列原则,提出了在不同情况下对一系列不同的自动技术所应负担的刑事责任进行研判的具体方法。
如何应对以人工智能为代表的新一轮科技革命带来的伦理和治理上的挑战?这是一个未被以往任何单个学科的研究所涵盖的问题。相比以往的技术,人工智能的独特之处就在于它的“自主性”。换言之,或由于技术本身的特性、或由于其应用过程中社会赋予了它特定角色,当代人工智能技术已经在深度“参与”人的决策。在这个意义上,人工智能技术与传统的工具意义上的技术有质的区别。正是由于这种对人的决策的深度“参与”,人工智能技术导致了短期和长期的伦理问题。本书系统地讨论了这些问题,在社会如何应对新一轮科技革命和产业变革的问题上有思想资源和分析框架上的性贡献。
身处AI(人工智能)世界,人类所有生活领域都面临着一场巨大变革。 人工智能的未来发展将走向何处?我们必须对什么情况做好心理准备?什么是与现实无关的、仅仅被渲染突出的幻境?智能机器在多大程度上构成一种威胁?将来我们与智能机器还有什么区别? 本书的每个章节都以一幕科幻剧作为开场,巧妙地回答了人类对无处不在的AI世界中,有关宇宙、人生及很多问题的追问。与此同时,作者艾伯尔在人工智能的应用领域、社会价值、行为认知以及深度学习等领域进行了 深层面的讨论。书中还向读者介绍了各式各样的机器人,比如烹饪机器人、演奏机器人、情感机器人,甚至用于军事领域的杀人机器人等,令人大开眼界。
针对混流装配线生产计划的智能优化需求,在概要阐述混流装配线及其生产计划内容的基础上,归纳混流装配线中的多种生产计划方式,介绍如何利用建模、分析和决策等一系列理论方法实现生产计划的智能优化方法体系,提升装配制造企业对多变客户需求的适应能力,为提高企业制造水平提供有益参考。全书分为10章,章介绍混流装配线中的生产计划体系;第2章总结混流装配线生产计划的现有优化方法;第3章提出混流装配线生产计划智能优化体系;第5至7章分别介绍智能优化方法体系中的建模、分析与决策等问题,以及适合问题特点的相关方法;第7至9章分别介绍自进化、自组织与自重构三种生产计划方式的具体实现方法;0章介绍面向柴油发动机企业的混流装配线生产计划智能优化原型系统。本书撰写基于理论与实践相结合的原则,注重前沿性技术在生产计划智
本书分为两大部分: 部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。从外,附录部分的内容也 丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
“科学技术是生产力”。如果科学技术转化不成生产力,就失去了应用支撑,而变成纯理论或被淘汰的技术。当下,在中国制造领域,各种概念满天飞,数字化、智能制造、工业4.0、工业互联网等。制造企业如何拨云见日,理解这些概念背后的核心支撑是什么,如何对接这些技术或理念?这些都值得广大从业人员思考。《落地生根――让智能制造回归价值》的作用正在于此。从制造企业面临的升级转型困局和不知道智能制造到底为何物的疑惑开始,引导读者思考制造企业的痛点,深入挖掘痛点背后制造业的复杂现状,给出智能制造的工具包,以及制造企业面临的问题。通过提供企业自诊断的工具模板、智能制造规划路线图等工具,不仅让制造企业家能够深入理解智能制造,同时也能让广大读者对智能制造的理解不再停留在概念层面,变得具有可操作性。
全书首先概要介绍了传统语音识别理论和经典的深度神经网络核心算法。接着全面而深入地介绍了深度学习在语音识别中的应用,包括\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"深度神经网络-隐马尔可夫混合模型”的训练和优化,特征表示学习、模型融合、自适应,以及以循环神经网络为代表的若干 深度学习技术。
作者在回顾日常生活中已经存在的人工智能技术的同时,逐步详细介绍了一些重要的里程碑以及未来学家们提出的概念,例如“奇点”的概念。作者以全球化的视野剖析了一些国家人工智能战略的主要特点,揭示了人工智能带来的机会与诱惑,以及哈萨克斯坦可以怎样在应用人工智能技术和参与其进一步发展方面发挥作用,以积极的姿态进入人工智能的新时代。
全书共10章分别从构建非生物智能体、感知、描述、连接、记忆和理解、学习与交互、智能体运算模式与处理功能、资源和任务功能系统、生存、思维、控制与主体性、智能体生命周期等角度深入讨论了智能体的方方面面,本书讨论一个极为庞大、复杂,且没有先例、没有形成共识的智能体或机器智能系统的实现机理、过程、要点,没有能、也做不到面面俱到,存在作者有意或无意忽略的环节。本书没有在工程细节层面讨论,只是在整体实现的主要环节的可实现性进行了框架性讨论。