《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
在众多的博弈论教材中,由弗登博格(Drew Fudenberg)和梯若尔(Jean Tirole)撰写的这本《博弈论》(Game Theory)应该是 经典、 全面和 深刻的教材之一,这一点已经通过了市场考验,并且经久不衰。本书是有关博弈论方面的图书的经典之作。囊括了迄今为止除演化博弈之外的所有博弈论的理论和方法,代表了博弈论发展的 水平。它不仅涵盖了博弈论的方方面面,而且几乎对每一个论题都给出了严密的数学推导和证明。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书以手册的形式涵盖了人们日常工作、学习所需用到的数学知识。内容包括算术、函数、几何学、线性代数、代数学、离散数学、微分学、无穷级数、积分学、微分方程、变分法、线性积分方程、泛函分析、向量分析与向量场、函数论、积分变换、概率论与数理统计、动力系统与混沌、优化、数值分析、计算机代数系统等,并专门设有数学常用表格章节,方便读者查阅。
本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
本书是一本涉及代数学和编码理论的基础性读物。作者用两章篇幅,以尽量少的抽象数学概念和语言来阐述这些编码理论所需要的代数知识,然后介绍编码理论中的两类码,即第三章的伪序列和第四章的纠错码。第三章完整地介绍了移位寄存器序列,特别是线性移位寄存器序列的理论。第四章介绍了几类重要的纠错码。最后在第五章,介绍了编码理论中出现的几个代数问题。 第三版除校正修订本的排印错误,改进符号表示外,在内容上也做了重要的修改和增补,特别在第三章增加了序列线性复杂度的重要概念,并用这个概念简化了解线性移位寄存器综合问题的Berlekamp-Massey迭代算法的证明 本书可供工程类、信息类打算进入编码理论或密码理论的、研究生作为教学参考书,也可供数学类专业学生和从事编码和密码工作的研究人员参
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
在众多的博弈论教材中,由弗登博格(Drew Fudenberg)和梯若尔(Jean Tirole)撰写的这本《博弈论》(Game Theory)应该是 经典、 全面和 深刻的教材之一,这一点已经通过了市场考验,并且经久不衰。本书是有关博弈论方面的图书的经典之作。囊括了迄今为止除演化博弈之外的所有博弈论的理论和方法,代表了博弈论发展的 水平。它不仅涵盖了博弈论的方方面面,而且几乎对每一个论题都给出了严密的数学推导和证明。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何
由夏宁茂等编著的《概率论与数理统计》是培养学生利用思维模式看待和处理现象的一门重要数学基础课程。通过模拟、函数计算及程序调用,把Excel工具广泛使用于概念的引进和数值计算,帮助学生形象理解新概念,直达核心处理思想;现代概念的描述性融入,现代概率论中的基本概念,例如:“可测性”、“概率空间变换”、“条件数学期望”、“期望积分平均”等科普描述性的引进,可使学生缩短与近代概率论之间的距离;重视基本概念与方法,又强调处理的思想,通过借用MBA的案例分析方法,引导学生灵活运用所学知识,掌握处理的基本过程;概率统计前后呼应、相互融合,兼顾传统理论与时代精神。
Origin 是由 OriginLab 公司开发的一个科学绘图与数据分析软件,该软件具有丰富的绘图功能及数据处理与分析功能,已被广泛应用于科技论文与论著的出版。 本书共 8 章,汇集 150 个实例,涵盖 Origin 基础与基本操作、绘图规范及其导出、数据类型及其导入方法、二维绘图、三维绘图、拟合与分析、数据与信号处理、高效率绘图等内容。本书内容翔实、实例丰富、实用性强,可使读者在较短时间内掌握 Origin 2023,并能从具体实例中获取 绘图技能和绘图优化灵感。 本书既适合作为高等院校和科研院所的科技绘图及数据分析实例教学用书,也是科技企业的科技工作者和工程技术人员的宝典。