数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《初等数论100例》由柯召、孙琦编著,选编了100个初等数论题目和它们的解答,并在后面列出了所需要的定义和定理,通过这些题目和解答,能增强解决数学问题的能力。 本书除了可以作为中学教师、中学生的读物外,也可供广大数学爱好者阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是*基础的,并非仅限于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要*终掌握超限归纳并且理解它为何总被Zorn引理替代的专业数学家。 《集合论基础》介绍了 朴素 (非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方
本书系统地介绍了置换多项式的产生、发展和理论,并且着重介绍了它在现代科学中的广泛应用.论述深入浅出,简明生动,读后有益于提高数学修养,开阔知识视野。 本书可供从事这一数学分支相关学科的数学工作者、大学生以及数学爱好者研读。
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
本书共分4个章节,具体内容包括函数、极限与连续、一元函数微分学、一元函数积分学。另外,书后还附加了数学实验(MATLAB在微积分中的简单应用)、微积分简史、微积分学常用公式和习题参考答案以供读者作为参考。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
本书主要涉及初等数论的相关知识,共选编了62道较经典的初等数论题目和它们的解答,并在后面列出了所需要的定义和定理。通过这些题目和解答,能增强读者解决数学问题的能力。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
《数学与人文》丛书第三十一辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本专辑登载丘成桐先生的两篇专稿,恰好分别是涉及中外两个著名高等学府的学术行政工作的回顾和评论,读来令人颇受教益和启发。在 数学与物理 栏目中,清华大学物理学教授、中科院院士薛其坤指出,数学和物理很多情况下都是密不可分的;美国新罕布什尔大学数学与统计系的孔良注意到,物理和数学从一开始就有着相互依存的关系;Charles F. Doran 和 Ursula A. Whitcher的文章再次证明,数学与物理之间确实存在着不可思议的密切联系。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对办好本丛书提出建议,更希望丛书能成为大家的良师益友。
《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
《数学与人文》丛书第三十辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分5个栏目,包含了20多篇文章。 专稿 栏目收录了丘成桐先生的 我做学问的经验 和 体育和做学问的关系 两篇演讲,以及杰出物理学家张首晟教授的文章 宇宙的灿烂,文明的辉煌 。 数学星空 栏目继续刊载数学大师格罗滕迪克生平的下半部分,以及两篇纪念德国著名代数学家Wilhelm Killing的文章。 中国数学 栏目包括了殷慰萍教授回顾中国多复变学科创建历史的文章、夏道行先生关于在浙江大学的学习经历的演讲、方建勇先生回忆陈省身先生的文章以及古代数学史大家郭书春先生的两篇介绍性短文。 数学杂谈 栏目刊载了7篇有趣的文章,分别讨论或介绍了数学的基本元素、搜索引擎中的线性代数、概率论的妙用、生物形态发生、算法与人工智能、指
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。*后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
本书各章的主角都曾经在当时数学主流之外,蹚出一条清溪,有的日后甚至拓展开恢弘的水域。历史上这类辩证的发展,让独行者的声音能不绝于耳,好似美国文学家梭罗在《瓦尔登湖》(Walden; or Life in the Woods)所说: 一个人没跟上同伴的脚步,也许正因为他听到另外的鼓点声。 这种个人偏好当然也影响了价值取向,作者认为在数学的国境内,不应该有绝对的霸主。一些不起眼的题材,都有可能成为日后重要领域的开端。正如美国诗人佛洛斯特的著名诗作《未曾踏上的路》(The Road Not Taken)所描述:林中分出两条路我选择人迹稀少的那条因而产生了莫大差别如果数学的天下只有一条康庄大道,就不会有今日曲径通幽繁花鼎盛的灿烂面貌,我们应该不时回顾并感念那些紧随内心呼唤而另辟蹊径的秀异人物。
本书对非线性*化的理论、算法及相关技术作了比较系统的介绍。在内容的选取方面,尽可能避免过分复杂的理论分析,以适应不同专业、不同层次技术人员对*化技术的需求,另外,也尽可能地增加一些数值例子或经济管理方面的应用实例。全书共分9章。*章主要介绍*化的基础理论;第二章介绍无约束*化问题的*性条件以及线搜索技术;第三章主要介绍无约束*化算法,主要有*速下降法、Newton法、共轭梯度法;第四章主要讨论约束优化问题的*性条件;第五章介绍Lagrange对偶理论;第六章介绍线性规划;第七章介绍二次规划的求解算法;第八章介绍一般非线性约束*化问题的罚函数法;第九章给出两种特殊规划:几何规划和多目标规划,并给出一些应用实例。
本书尝试观察的知识现象,多有不为主流数学史所留意的题材,如 计算 大叙事的简要轮廓、中国古代对角度的认识等。其实历史发生的就发生了,没发生的就没发生,像所谓的 李约瑟难题 ,即近代科学为什么没有在中国产生这类问题,不敢期望会取得终极答案。历史的进程是极度复杂的,从太多难以分辨的影响因素中,厘清一条因果明晰的关系链条,这种企图对作者来说没有什么吸引力。作者只希望读者能从涉猎数学史的过程里寻觅一些乐趣,感受那种在前人到过的山川原野上采撷到被忽视的奇花异草的欣喜。
本书通过一个个有趣的故事,讲述了数学中的许多概念与方法是怎样在生活中逐步产生和发展的,使读者能够更为亲切地接触数学发展的历史。内容包括:改变世界的数学、游戏中的数学、有用的数学。书中的每一个数学问题和故事,都来源于生活。希望读者在阅读本书之后,能够知道数学与生活的密切联系,懂得数学是人们了解世界、认识世界的强有力的工具,也能够认识到在学习数学的过程中,可以培养人的分析能力、应用能力和逻辑思维能力,这些能力对人的发展会发挥长久的作用。
本书是由丘成桐主编的 数学与人文 系列丛书中的第二十八辑。丛书以大学生为主要读者对象,同时也适合中学数学教师阅读;它不仅适合数学领域的师生、研究人员阅读,而且也是社会上知识阶层有益的读物。丛书中的文章涵盖数学学科、数学家、数学史、数学文化和数学教育等方面的内容。 数学游戏和数学谜题是数学文化的重要组成部分,也是纯数学不可或缺的一部分,其中的数学知识也经常出乎意料地美妙。本辑收录了16篇文章,介绍了十五子游戏、七巧板、汉诺塔、Nim 游戏、幻方、鲁班锁、滑块游戏、24 点游戏、九连环等数学游戏和谜题以及它们背后的数学原理。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对办好本丛书提出建议,更希望丛书能成为大家的良师益友。
本书的主轴是 艺数 。 艺数 是近年来台湾数学科普界所新造的名词,它的范围至少包含以下三类:(1)以艺术手法展示数学内容;(2)受数学思想或成果启发的艺术;(3)数学家创作的艺术。数学与艺术互动最深刻的史实,莫过于欧洲文艺复兴时期从绘画发展出透视法,里昂?阿尔伯蒂的名著《论绘画》开宗明义: 我首先要从数学家那里撷取我的主题所需的材料。 这种技法日后促成数学家建立了射影几何学,终成为19世纪数学的主流。以往很多抽象的数学概念,数学家只能在脑中想象,很难传达给外行人体会。但是自从计算机带来的革命性进步,数学的抽象建构也得以用艺术的手法呈现出来。本书有心向读者介绍 艺数 这种跨接艺术与数学的领域,也让大家了解在台湾所开展的推广活动。