本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
本书是著名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法一一合情推理(即猜想)。本书通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,本书的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。
本书一方面,以《教师教育课程标准》、《教师资格标准》和《数学学科知识与教学能力》(初级中学)考试大纲为依据,以指导和辅助学生有效整合教师教育相关大学学科知识学习为指向,密切结合学习与应试需求,使学习者通过阅读和学习本教材,具有适应初中教学和和国家教师资格考试相关科目的数学学科知识与教学能力;另一方面,以初中数学教师应具有的数学学科知识与教学能力为核心内容,以已有考试真题和命题趋势为导向解读数学学科知识与教学能力中各类知识的学习要点和应试策略。
《不等式的秘密(卷第2版)》部分(1 8章)的内容主要介绍了常用的不等式,如AM GM不等式、Cauchy-Schwarz不等式、Holder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。1部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。 本书适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
这是《不等式的秘密》一书的第二卷,取名为《不等式的秘密(第2卷高级不等式)》。在本卷你可以看到五种方法,这些方法不仅能提升解决不等式的能力,而且还可以减少问题的复杂性并给出漂亮的证明。 在此,你可以找到证明不等式的现代方法:整合变量法、乎方分析法、反证法、归纳法和经典不等式的使用方法。正如你阅读过的本书卷一样,这里有许多漂亮和困难的问题训练你使用这些方法的技能。 我们希望,作者范建熊倾注在本书关于不等式方面的热情和汗水对你有用。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
这本教材包含了初等数论的基础知识,穿插了有关史料及费马、欧拉、高斯等数论大师的生平事迹,也介绍了许多数论名题及相关进展。本书包括正文7章及附录:自然数的基本性质,整除性、素数及算术基本定理,带余除法、*公因数及*小公倍数,辗转相除法与线性丢番图方程,同余式、剩余类及中国剩余定理,欧拉定理、费马小定理及威尔逊定理,二次剩余理论及其应用,作者提出的十个数论猜想。本书起点较低,在每章后都配有习题,便于具有高中以上水平的读者自学。 本书可作为高等学校 初等数论 课程的入门教材,也可作为高中数学教师的参考用书。
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
本书是数理统计入门级的教材,作为基础课的教材,本次修订我们修改了版中的不当之处,删去了U统计量、线性估计、构造置信限等内容,选择点估计、区间估计、参数检验和分布检验4个基本的统计问题作为本书主要内容,中间插入贝叶斯统计的一些观念和方法。全书5章内容,把统计量和抽样分布等基本概念归入第1章,为年轻读者进入统计学的研究和应用打下扎实的基础
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
本书由131个 无需语言的证明 的图片组成,每一个都非常精彩。当从一个图片中悟出为何该图片证明了相应的数学结论时,读者便能够体会到数学绝妙的美,所以这本书叫做数学写真集。书中的素材选取自国际数学杂志中一流数学家发表的文章。
本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
本书从一道北京大学金秋营数学试题的解法谈起,详细介绍了伽罗瓦理论的相关知识.全书共分为十一章,主要介绍了伽罗瓦小传、群是什么、群的重要性质、一个方程式的群、伽罗瓦的鉴定、用直尺与圆规的作图、伽罗瓦的鉴定为什么是对的、可计算域和伽罗瓦理论等内容.本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读.
本书是《数学建模算法与应用(第3版)》的配套书籍。本书给出了《数学建模算法与应用(第3版)》中全部习题的解答及程序设计,另外针对选修课的教学内容,又给出一些补充习题及解答。本书的程序来自于教学实践,有许多经验心得体现在编程的技巧中。这些技巧不仅实用,也很有特色。书中提供了全部习题的程序,读者可以将这些程序直接作为工具箱来使用。