本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书是普通高等教育“十三五”规划教材、全国高等医药院校规划教材《医药高等数学》(第5版)的配套教材,也是本书的第4版。全书分10章,包括一元函数微积分、空间解析几何、多元函数微积分、微分方程与无穷级数等。《医药高等数学》侧重于理论,本书侧重于理论知识的归纳总结、各类各层次习题的分析与解法,它有利于学生对高等数学的概念与理论的理解,有利于培养学生归纳总结、分析解决问题的能力,有利于学生对运算和方法的掌握,也有利于沟通教与学两个教学环节。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
《高等数学(下册)/新核心理工基础教材》吸取其他高等数学教材精华部分,依照少学时高等数学教学的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性、针对性,便于少学时高等数学教学,也方便学生自学,各章、节知识点后配有相应习题,并附习题答案。 《高等数学(下册)/新核心理工基础教材》分上、下两册。下册包括多元函数微积分,重积分,无穷级数和微分方程四部分内容。 《高等数学(下册)/新核心理工基础教材》可作为少学时高等数学的教学用书,也可供广大读者进行自学。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书是大学数学学习指导系列之一,包含了线性代数与空间解析几何中的主要内容。全书共分十一章,它们是行列式、矩阵、n维向量空间、线性方程组、空间解析几何、矩阵的特征值与特征向量、二次型、一元多项式、线性空间、线性变换和欧几里得空间等。本书精选了将近400道例题和400道练习题,选材注重突出课程的基本要求,力求做到解题简明,思路清晰,由易到难,从基本到综合,循序渐进。本书编写体例有内容精讲、典型例题、练习和提示与答案四部分。概述了每一章节的基本概念、基本定理和基本方法。在某些难以理解或容易出错的地方特别作出解释,指出各概念之间的联系。在大部分例题中,都有思路分析、解题过程、小结以及注解等,有的题还提供了每一节后面都安排了适量的习题,读者可以通过练习进一步巩固所学到的知识,掌握各种题型的解
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以
本书是综合大学数学系“数学分析”课程的辅导教材。本书是配合主教材《数学分析》而编写的同步使用的学习辅导书。全书共12章,每章按照内容提要、教学要求、典型例题分析编写,对学习中出现的疑难问题给予指导。
该书介绍了一些的数论问题,适合不同层次的读者阅读。一方面,作者不需要更宽泛的数学知识;事实上,只要在数学方面接受过正规的学校教育就足够了。另一方面,作者探讨了一些真正的数学兴趣问题,并以更易读懂的方式讲解,因此,数学知识丰富的作者在阅读此书时会感到非常愉悦和有益。该书中几个值得注意的点:数学归纳法的详细讲述和通过该法证明的独特的因子分解定理。
这本《高等数学重要习题集》是为工科院校的大学编写的。他们在学习高等数学时,除了要做量的基本习题外,还需要做一些有适当难度的综合性习题,以便加深对所学课程内容的理解,灵活地掌握运算方法和提高自己的解题技巧,培养解题、解决问题的能力。本习题集就是为适应这种要求而编写的。对于在校的或社会上的准备报考工科研究生的读者,本书也可供他们的应试之前复习高等数学时参考之用。 本习题集是根据高等学校工科数学课程教学指导委员会制订的《高等数学教学基本要求》,按照高等数学通用教材的章节顺序编写的,因此它可以与通用教材配合使用。习题集合章均由例题、基本题杂题三部分组成(例题约100个,基本题约1430个,杂题约900个),例题是为了配合杂题选解的,计算题都附有答案,为了启发思考、提供解题方法,大部分杂题给出了