“中国文化知识读本”丛书是由吉林文史出版社和吉林出版集团有限责任公司组织知名专家学者编写的一套旨在传播中华五千年传统文化,提高全民文化修养的大型知识读本。 王泽妍编著的《古代数学与算学》为丛书之一,生动介绍了古代数学发展、古代算术名家、古代算书、古代记数制度和计算工具等内容。 《古代数学与算学》中优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。
《组合数学(第2版)》系统地介绍了组合数学的基础知识,包括排列和组合、容斥原理、递推关系、生成函数、整数的分拆、鸽笼原理和Ramsey定理、P61ya计数定理等。书中内容丰富,叙述条理清楚,深入浅出,例题多且配备大量习题(计算题均附有答案),便于读者自学。 《组合数学(第2版)》可用作高等师范院校数学专业教材,也可作为中学教师、科技人员学习组合数学的入门书。
本书是关于编码理论的一本教材,主要介绍编码理论的基本知识。全书共十二章,可以分为两部分。部分是第二章至第四章,主要介绍编码理论中用到的代数基本知识,特别是有限域的基本知识。第二部分是第五章至第十二章,主要介绍编码理论的基本知识,包括线性码、HamHnng码、Golay码、循环码、BcH码、Reed-Muller码以及线性码的重量分布等。 本书适合高等院校的信息科学、计算机科学以及通信等专业的本科生作为教材使用,也可供相关领域的科研人员和工程技术人员参考。
《线性代数附册:学习辅导与习题选解(同济·第4版)》是与同济大学应用数学系主编的《线性代数》(第四版)相配套的学习辅导书,主要面向使用该教材的学生,也可供使用该教材的教师作教学参考。《线性代数附册学习辅导与习题选解(同济·第4版)》编者之一是《线性代数》第四版的编者,另一位编者在同济大学多年执教线性代数课程。为了与教学需求保持同步,《线性代数附册学习辅导与习题选解(同济·第4版)》按《线性代数》第四版的章节顺序编写,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题选解和补充习题(附答案和提示)等七个栏目。其中“释疑解难”显示出编者对课程内容的深刻理解和长期教学积累的丰富经验;“例题剖析”充分开发出例题的作用,还有助于读者掌握举一反三的学习方法;“习题选解”
《高等学校小学教育专业教材:初等数论》特点简明、实用。内容共分五章:数的整除性、同余、数论函数、不定方程、连分数.每一章都与中学、小学数学有较密切的联系,纯理论的问题,如皮亚诺(Peano)的序数理论,因为没有太多的用处,我们就没有编到书中,每一章除对必需的知识作扼要的介绍外,还配置大量的例题,以帮助学生运用有关的知识.实践表明学生学习数论的主要困难,并不在学习有关知识,而在运用这些知识去解决问题,因此,我们将重点放在后者,同时还精选了一些习题,帮助学生巩固所学知识,个别打星号的题难度较大,可供学习较好的同学选用,培养他们的创造能力.习题均有解答或提示,供教师参考.
本书系作者为理工类(非数学专业)本科生撰写的一部关于线性代数课程的辅助教材。内容涉及行列式,矩阵,线性方程组,向量空间,矩阵的特征值与特征向量以及二次型等。本书高度浓缩,精练了线性代数的基本知识点,系统地介绍了各种解题技巧,为理工类本科生备考硕士研究生提供了有益的指导。 本书可以作为理工类(非数学专业)各专业本科生的辅助教材,也可以供数学教师,各类工程技术人员,有志备考硕士研究生的年轻学者以及数学爱好者参考。
《组合数学(第2版)》系统地介绍了组合数学的基础知识,包括排列和组合、容斥原理、递推关系、生成函数、整数的分拆、鸽笼原理和Ramsey定理、P61ya计数定理等。书中内容丰富,叙述条理清楚,深入浅出,例题多且配备大量习题(计算题均附有答案),便于读者自学。 《组合数学(第2版)》可用作高等师范院校数学专业教材,也可作为中学教师、科技人员学习组合数学的入门书。
《离散数学及其应用(原书第7版)》是经典的离散数学教材,为全球多所大学广为采用。《离散数学及其应用(原书第7版)》全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思想以及应用与建模。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目以及丰富的历史资料和网站资料。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。
本书是作者结合多年的教学实践编写的.全书共分七章和两个附录,前六章内容包括行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换,其中配备了较多的典型例题和同步习题,并对典型例题给出了详细的分析、解答和评注.第7章是自测试题及解答,附录1为同济大学《线性代数》(第5版)课后习题全解,附录2为同济大学《线性代数》(第5版)课外习题详解。 本书可作为理工科院校本科各专业学生的线性代数课程学习指导书或考研参考书,也可以作为相关课程教学人员的教学参考资料。
本书是在《线性代数(第二版)》的基础上,广泛听取校内外教师的意见后修订而成的。作者针对工科类院校的特点,从教学实际出发,注重联系理工科专业实际,注重理论的严谨性,本着重概念、重方法、重应用的精神,以矩阵为主线,突出矩阵的运算、化简和数字特征,突出用矩阵方法研究线性方程组、二次型和经济模型,力求将数学、应用和计算机三者相结合,增加了数学建模、常用软件介绍和数学实验课。本书具有简明精要、逻辑严谨、论述清晰、例题和习题丰富、实用性强、便于自学等特点。 本书可作为高等院校理工科各专业线性代数课程的教材,也可供科技工作者参考。
本书内容包括行列式、矩阵、向量组的线性相关性、线性方程组、矩阵的特征值与特征向量和方阵对角化、二次型。 与本书配套的有习题课教材、电子教案。该套教材汲取了当前教育改革中的一些成功举措,总结了作者在教学、科研方面的研究成果,注重数学在经济管理领域中的应用,选用了大量有关的例题与习题;具有结构严谨、逻辑清楚、循序渐进、结合实际等特点。本书可作为高等学校经济、管理、金融及相关专业的教材或教学参考书。
本书根据高等院校经管类本科专业线性代数课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应即时实现实验操作。本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型等知识。 本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本书较为系统地介绍了计算机科学与技术等相关专业所必需的离散数学知识,全书分为4个部分(数理逻辑、集合论、代数结构和图论),共7章。章介绍命题及命题逻辑; 第2章介绍一阶谓词逻辑及其推理理论; 第3章介绍集合的基本概念和性质; 第4章介绍二元关系和函数; 第5章介绍代数系统基本概念; 第6章介绍几个典型的代数系统; 第7章介绍图论的基础内容和一些特殊图及其性质。各章之后配有适当难度的习题及其简要参考答案,便于学生课后练习。每个部分结束后配有内容小结,便于学生自学、复习和提高。本书可以作为高等院校计算机科学与技术、软件工程、通信工程等相关专业的教材,也可以作为考研学生及计算机工作者的参考书。
包括五章内容分别为:靠前章行列式,第二章矩阵,第三章矩阵的初等变换与线性方程组,第四章向量组的线性相关性,第五章相似矩阵与二次型。本书涵盖内容丰富,侧重有关专题的理论及应用研究。本书可作为普通高等学校理工科专业学生的教材用书。
本书是为理工科大学理工与经济学类专业"线性代数"课程编写的教材,内容包括:线性方程组与矩阵,方阵的行列式,矩阵与向量的运算,向量组与向量空间,矩阵特征值和特征向量,二次型,Matlab在线性代数中的应用。每节内穿插有例题,练习题,每章末附有习题。书末附录有行列式的全排列及逆序数方法定义,习题解答。本书结合理工科与经济类专业教学实际,注意理论和实际相结合,选材适当,体系新颖,论述严谨,条理清楚,对概念的解释透彻,便于教学和学生自学。
本书是《大学数学学习方法》丛书之一。共有7章。内容包括命题逻辑、谓词逻辑(一阶逻辑)、集合与关系、函数、代数结构、格与布尔代数、图论。附录部分提供了模拟试题及其解答共6套·《离散数学疑难分析与解题方法》在归纳内容、疑难解析的基础上,用丰富的例题为读者诠释概念、演绎技巧,以培养读者分析和解决问题的能力。 本书可作为高等理工科院校计算机科学、工程与应用专业的教学参考书,也可作为本科生学习与考研的指导书。
本书作为高等数学提高课程的教学用书,涵盖了考研数学大纲中对高等数学所要求的内容。全书由引论及十章组成,按通常的教学顺序编排,其中包括内容提要、例题解析、习题、习题的答案与提示。 本书内容全面,易于教学与自学,可作为考研数学辅导班、数学竞赛辅导班的教材或参考用书,也可作为参加考研或数学竞赛学生的自学辅导书。
我们精心汇集了历年来全国硕士研究生数学试题线性代数部分考题,对其进行了较全面的整理和分析,并反复推敲,修改和筛选出其具有很强的典型性、灵活性、启发性、趣味性和综合性的题目,并附以详细的解答过程,以便读者参考学习和自测自评,特别地,为了使学生在学完每一章节后可以立即转入到本书的学习,本书内容在编排上完全与现行教材线性代数同步,可以作为课堂教学的补充和延续。 本书每一章都包括以下八个方面的内容: 一 考点提示及大纲要求。大纲要求一目了然,考点简明扼要。 二 重点知识结构图。该图提纲挈领,逻辑性强,体系完整。 三 常考题型与范例精解。题型典型灵活,解题方法富于技巧,内容覆盖全面。 四 疑难解答。抓住要害,突出重点,难点,扩宽知识面。 五 考研经典题剖析。开阔视野,一步到位,使该