《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
莫宗坚、蓝以中、赵春来编著的《代数学(下修 订版)/现代数学基础》为《代数学》下册,主要讲述 交换代数的基本知识,内容包括环论、赋值论、 Dedekind整环及同调代数。这些都是交换代数的精华 内容,是学习代数几何、代数数论等现代数学的 基础。 本书内容丰富,直观性强,推理自然,解释详尽 。本书的独到之处是特别注重对于交换代数的背景以 及与其他学科的联系的介绍。书中精选了大量的例题 与习题。 本书可作为高等学校数学专业研究生教材,也可 供数学工作者参考。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书是一本涉及代数学和编码理论的基础性读物。作者用两章篇幅,以尽量少的抽象数学概念和语言来阐述这些编码理论所需要的代数知识,然后介绍编码理论中的两类码,即第三章的伪*序列和第四章的纠错码。第三章完整地介绍了移位寄存器序列,特别是线性移位寄存器序列的理论。第四章介绍了几类重要的纠错码。后在第五章,介绍了编码理论中出现的几个代数问题。 第三版除校正修订本的排印错误,改进符号表示外,在内容上也做了重要的修改和增补,特别在第三章增加了序列线性复杂度的重要概念,并用这个概念简化了解线性移位寄存器综合问题的Berlekamp-Massey迭代算法的证明 本书可供工程类、信息类打算进入编码理论或密码理论的大学生、研究生作为教学参考书,也可供数学类专业学生和从事编码和密码工作的研究人员参考。
《初中数学千题解》是“浙江思美数学”团队为初中学生与数学教师量身打造的精品丛书。本分册由代数综合100题和圆100题及其解析组成。前者包括数与式、方程与不等式、函数与代数综合以及数论等内容;后者包括圆与折叠、圆与相似、圆中的动点问题、隐形圆问题、圆幂定理相关拓展、圆的综合等内容。书中题目都有详解,并设“思路点拨”栏目,使学生不仅知其然, 知其所以然。 书中题目精选自全国各地知名中学的经典考题,具有很高的实战价值,同时兼顾重点高中的自主招生考试,个别习题难度较大,适合尖子生研习。
李晓艳、魏晓娜、李永军编写的《线性代数与解析几何(普通高等教育十三五规划教材)》内容包括行列式、矩阵与线性方程组、几何向量与坐标、轨迹与方程、平面与直线、线性空间、特征值与特征向量、二次型与常见的二次曲面,同时附有多个应用教学案例,本书的特点是强调几何与代数的融合,强调从具体到抽象的思维方式,以及从问题出发引入概念与内容的教学模式。 本书可作为理工科和其他非数学类专业高等院校的教学用书,也可作为各大专院校或成人教育学院的学生教材,还可作为考研生、自学者和广大科技工作者的参考资料。
本书是\\\"小学数学教师·新探索\\\"系列中的一本,聚焦小学生早期代数的学习与诊断,以小学数学课程中的7个典型教学内容(分别是几何图形的模式概括、加法运算中的数值推理、乘法分配律的学习进阶、线性模型解文字题、解方程的教学干预、等号的理解、分数情境中是数学抽象)为切口,通过课堂观察、结构化访谈、视频分析、数据对比等方式,重点考察学生在代数学习中如何建构数学关系、模式和算术结构,同时密切关注其推理过程,从而探索在低年级阶段渗透早期代数思维的可行路径。 本书对 外涉及早期代数的相关研究作了比较系统的梳理,具有一定的
本书以 高等学校数学类专业教学指导委员会 会议精神为指导,为适应21世纪教学改革与专业课程建设的需要,结合应用型普通本科院校相关专业的学生基础和教学特点编写而成.本教材分为上、下两册,以通俗易懂的语言,全面而系统地讲解高等代数的基本知识。全书为下册,以线性空间为纲,在线性空间的框架下展开高等代数的主要内容.内容包括:行列式、矩阵、线性空间和线性变换、多项式、特征值、相似标准型、二次型、内积空间和双线性型等.本书力求深入浅出,在介绍抽象的数学概念时交代其来龙去脉,在讲解精妙的数学方法时不忘交代其思路书中还有大量精选的例题和习题.本书是高等学校数学专业的教材,也适合统计专业,理工、经管类专业的师生参考使用。