本书汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 书中通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
本书运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的例题和习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案或提示。
本书系统阐述线性模型的基本坪论、方法及其应用,其中包括理论与应用的近期发展。全书共分九章,第一章通过实例引进各种线性模型,第二章讨论矩阵论方面的补充知识,第三章讨论多元正态及有关分布。从第四章起,系统讨论线性模型统计推断的基本理论与方法,包括:最小二乘估计、假设检验、置信区域、预测、线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型。
《代数等式证题法》以全国统编中学教学大纲为基础,深入细致地讨论了代数等式证明的方法与技巧,归纳出按图索骥、量体裁衣、殊途同归等七种有效的方法,并对每一种方法都做了举例说明。《代数等式证题法》适用于中学生、知识青年自学,也可供中学数学教师参阅。
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队精心编写的试题集系列中的一本。本书从解题的视角来举例说明初等代数中的基本策略和技巧,书中涵盖了初等代数的众多经典论题.包括因式分解、二
本书介绍了作者近年来在解析不等式研究方面取得的成果,包括几何凸函数基本性质、对数凸函数和GA凸函数的积分不等式、最值压缩定理、最值单调定理及它们的应用,统一证明了一些不等式,加强或推广了一些已知不等式,新建了一批有价值的解析不等式。全书包含了上百个不等式的证明,是不等式研究方面的一本较好的入门书和参考书。 本书可供数学研究人员、大学数学系师生、中学数学教师及数学爱好者阅读。