本书是为线性代数课程编写的教学参考用书。全书共五章,内容包括行列式、矩阵、线性议程组、特征值与特征向量、二次型等。每章由重点内容提要、知识结构图、常考题型及考研典型题精解、学习效果两级测试题、课后习题全解等五部分组成。其目的是针对学生在学习过程中遇到的疑难问题以及财经类硕士研究生入学考试中的常考题型,通过典型例题的求解,引导学生掌握解题方法,提高解题能力。学习效果两级测试题则是为学生自我测试提供的,对教材中的课后习题也给出了详细解答。 本书内容与中国人民大学出版社出版的经济应用数学基础《线性代数》(第三版)相配套,对学习财经类线性代数的同学是一本很好的辅导教材,同时也可供报考硕士研究生的考生复习应考以及从事线性代数课程教学的教师参考。
本书按照同济大学编的《线性代数》教材的章节顺序,分别介绍了考试内容和考试要求,总结了重要结论与公式,分析了重点与难点,借助了框图直观地给出了知识脉络。通过对典型例题的分析、求解和评注,揭示了线性代数的解题方法与技巧。另外,给出了同济大学编的《线性代数》(第三册)教材中习题的全部详细解答。附录中提供了线性代数考试真题,供学生练习时参考。 本书可作为工科学生学习线性代数 的指导书,可供报考硕士研究生的读者、有关教师及科技工作人员参考。
本书是格致方法·定量研究系列丛书之一种。图解代数即一种将社会科学理论翻译成数学公式的语言,这种语言被用来简化建模过程,以便发展出用其他方式不太能完成的更为精致的模型,去描述复杂的社会科学思想。作者用图解代数重新构造了线性回归模型,介绍了图解代数中时间算子的应用,特别是当系统中含有反馈和控制的时候。随后,作者用美国工会成员身份的例子来揭示一种估计图解代数模型的方法,以描述图解代数怎样被应用于系统方程。最后,作者介绍图解代数关于条件路径的思想,并总结了图解代数本身潜在的一些理论问题。
对称是客观世界中相当普遍的现象,而群是现代数学中一个抽象的概念,但它们却有密切的联系。《对称与群》从读者比较熟悉的平面图形的对称入手,逐步提炼、归纳,总结出对称的本质;然后辅以置换群和多项式的对称群等内容,巩固得到的理性认识;*后简单介绍抽象群的概念和例子,以及群的若干应用。《对称与群》不过多地追求知识的系统性和严格性而特别注意对称和群中本质的内容和主要的线索,注重阐述其中的数学思想。